Genetic determinacy of severe COVID-19


DOI: https://dx.doi.org/10.18565/epidem.2023.13.4.101-5

Kharaeva Z.F., Degoeva D.V., Marzhokhova M.Yu., Marzhokhova A.R.

Kh.M. Berbekov Kabardino-Balkarian State University Nalchik, Russia
The review attempts to systematize the currently available data on the influence of polymorphic variants of individual genes and/or mutations of individual genes on the development and severity of viral infection. An analysis of data on genetic determinacy of greater sensitivity to SARS-CoV-2 associated with the receptor phenotype of target cells, as well as the risk of developing a “cytokine storm” is presented.

Literature


1. Kucher A.N., Babushkina N.P., Sleptcov A.A., Nazarenko M.S. Genetic Control of Human Infection with SARS-CoV-2. Rus. J. Genet. 2021; 57(6): 627–41. doi: 10.1134/S1022795421050057


2. Goyal P., Choi J.J., Pinheiro L.C., Schenck E.J., Chen R., Jabri A. et al. Clinical characteristics of Covid-19 in New York City. N. Engl. J. Med. 2020; 382(24): 2372–4. DOI: 10.1056/NEJMc2010419


3. Wang F., Huang S., Gao R., Zhou Y., Lai C., Li Z. et al. Initial whole-genome sequencing and analysis of the host genetic contribution to COVID-19 severity and susceptibility. Cell Discovery. 2020; (6): 83–99. DOI: 10.1038/s41421-020-00231-4


4. Fricke-Galindo I., Falfán-Valencia R. Genetics Insight for COVID-19 Susceptibility and Severity: A Review. Front Immunol. 2021; 12: 622176. doi: 10.3389/fimmu.2021.622176


5. Hamming I., Cooper M., Haagmans B., Hooper N., Korstanje R., Osterhaus A. et al. The emerging role of ACE2 in physiology and disease. J. Pathol. 2007; 212(1): 1–11. DOI:10.1002/path.2162


6. Turk C., Turk S., Temirci E.S., Malkan U.Y., Haznedaroglu I.C. In vitro analysis of the renin–angiotensin system and inflammatory gene transcripts in human bronchial epithelial cells after infection with severe acute respiratory syndrome coronavirus. J. Renin Angiotensin Aldosterone Syst. 2020; 21(2): 1470320320928872. doi: 10.1177/1470320320928872


7. Çelik S.K., Genç G.S., Pişkin N., Açikgöz B., Altinsoy B., İşsiz B.K. et al. Polymorphisms of ACE (I/D) and ACE2 receptor gene (Rs2106809, Rs2285666) are not related to the clinical course of COVID‐19: A case study. J. Med. Virol. 2021; 93(10): 5947–52. DOI:10.1002/jmv.27160


8. Anastassopoulou C., Gkizarioti Z., Patrinos G.P., Tsakris A. Human genetic factors associated with susceptibility to SARS-CoV-2 infection and COVID-19 disease severity. Hum. Genomics 2020; 14: 40. DOI:10.1186/s40246-020-00290-4


9. Darbani B. The expression and polymorphism of entry machinery for COVID-19 in human: juxtaposing population groups, gender, and different tissues. Int. J. Environ. Res. Public Health. 2020; 17(10): 3433. DOI: 10.3390/ijerph17103433


10. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181(2): 271–80. DOI: 10.1016/j.cell.2020.02.052


11. Essalmani R., Jain J., Susan-Resiga D., Andréo U., Evagelidis A., Derbali R.M. et al. Distinctive Roles of Furin and TMPRSS2 in SARS-CoV-2 Infectivity. J Virol. 2022; 96(8): e0012822. doi: 10.1128/jvi.00128-22


12. Senapati S., Banerjee P., Bhagavatula S., Kushwaha P.P., Kumar S. Contributions of human ACE2 and TMPRSS2 in determining host-pathogen interaction of COVID-19. J. Genet. 2021; 100(1): 12. doi: 10.1007/s12041-021-01262-w


13. Iwata-Yoshikawa N., Okamura T., Shimizu Y., Hasegawa H., Takeda M., Nagata N. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J. Virol. 2019; 93(6): e01815-18. DOI:10.1128/JVI.01815-18


14. Lippi G., Wong J., Henry B.M. Hypertension in patients with coronavirus disease 2019 (COVID-19): a pooled analysis. Pol. Arch. Int. Med. 2020; 130(4): 304–9. DOI:10.20452/pamw.15272


15. Bilinska K., Jakubowska P., von Bartheld C.S., Butowt R. Expression of the SARS-CoV-2 entry proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium:


16. Ma M., Xu Y., Su Y., Ong S.B., Hu X., Chai M. et al. Single-Cell Transcriptome Analysis Decipher New Potential Regulation Mechanism of ACE2 and NPs Signaling Among Heart Failure Patients Infected With SARS-CoV-2. Front Cardiovasc. Med. 2021; (8): 628885. doi: 10.3389/fcvm.2021.628885


17. Siordia J.A. Epidemiology and clinical features of COVID-19: a review of current literature. J. Clin. Virol. 2020; 127: 104357. DOI: 10.1016/j.jcv.2020.104357


18. Jackson D.J., Busse W.W., Bacharier L.B., Kattan M., O’Connor G.T., Wood R.A. et al. Association of respiratory allergy, asthma, and expression of the SARS-CoV-2 receptor ACE2. J. Allergy Clin. Immunol. 2020; 146(1): 203–6. DOI: 10.1016/j.jaci.2020.04.009


19. Ryan P.M., Caplice N.M. Is adipose tissue a reservoir for viral spread, immune activation and cytokine amplification in COVID-19. Obesity (Silver Spring) 2020; 28(7): 1191–4. DOI:10.1002/oby.22843


20. Beacon T.H., Su R.C., Lakowski T.M., Delcuve G.P., Davie J.R. SARS-CoV-2 multifaceted interaction with the human host. Part II: Innate immunity response, immunopathology, and epigenetics. IUBMB Life 2020; 72(11): 2331–54. doi: 10.1002/iub.2379


21. Fallerini C., Daga S., Mantovani S., Benetti E., Picchiotti N., Francisci D. et al. Association of Toll-like receptor 7 variants with life-threatening COVID-19 disease in males: findings from a nested case-control study. Elife 2021; 10: e67569. DOI: 10.7554/eLife.67569


22. Manik M., Singh R.K. Role of toll-like receptors in modulation of cytokine storm signaling in SARS-CoV-2-induced COVID-19. J/ Med/ Virol. 2022; 94(3): 869–77. doi: 10.1002/jmv.27405


23. Khanmohammadi S., Rezaei N. Role of Toll-like receptors in the pathogenesis of COVID-19. J. Med. Virol. 2021; 93(5): 2735–739. DOI: 10.1002/jmv.26826


24. Velavan T.P., Pallerla S.R., Ruter J., Augustin Y., Kremsner P.G., Krishna S. et al. Host genetic factors determining COVID-19 susceptibility and severity. EBioMedicine 2021; 72: 103629. DOI: 10.1016/j.biol.2021.103629


25. Moreno-Eutimio M.A., López-Macías C., Pastelin-Palacios R. Bioinformatic Analysis and Identification of Single-Stranded RNA Sequences Recognized by TLR7/8 in the SARS-CoV-2, SARS-CoV, and MERS-CoV Genomes. Microbes Infect. 2020; 22: 226–9. DOI:10.1016/j.micinf.2020.04.009


26. Jaillon S., Berthenet K., Garlanda C. Sexual Dimorphism in Innate Immunity. Clin Rev Allergy Immunol. 2019; 56: 308–21. DOI: 10.1007/s12016-017-8648-x


27. Scheuplein V.A., Seifried J., Malczyk A.H., Miller L., Höcker L., Vergara-Alert J. et al. High secretion of interferons by human plasmacytoid dendritic cells upon recognition of Middle East respiratory syndrome coronavirus. J. Virol. 2015; 89(7): 3859–69. doi: 10.1128/JVI.03607-14


28. Iturrieta-Zuazo I., Rita C.G., García-Soidán A., de Malet Pintos-Fonseca A., Alonso-Alarcón N. et al. Possible role of HLA class-I genotype in SARS-CoV-2 infection and progression: a pilot study in a cohort of Covid-19 Spanish patients. Clin. Immunol. 2020; 219: 108572. DOI: 10.1016/j.clim.2020.108572


29. Vietzen H., Zoufaly A., Traugott M., Aberle J., Aberle S.W., Puchhammer-Stöckl E. Deletion of the NKG2C receptor encoding KLRC2 gene and HLA-E variants are risk factors for severe COVID-19. Genetics in Medicine 2021; 23: 963– 7. DOI:10.1038/s41436-020-01077-7


30. Wang W., Zhang W., Zhang J., He J., Zhu F. Distribution of HLA allele frequencies in 82 Chinese individuals with coronavirus disease-2019 (COVID-19). HLA 2020; 96: 194–6. DOI: 10.1111/tan.13941


31. Correale P., Mutti L., Pentimalli F., Baglio G., Saladino R.E., Sileri P. et al. HLAB* 44 and C * 01 Prevalence Correlates with Covid19 Spreading across Italy. Int. J. Mol. Sci. 2020; 21: 5205–17. DOI: 10.3390/ijms21155205


32. Amoroso A., Magistroni P., Vespasiano F., Bella A., Bellino S., Puoti F. et al. HLA and AB0 Polymorphisms May Influence SARS-CoV-2 Infection and COVID-19 Severity. Transplantation 2021; 105: 193–200. DOI: 10.1097/TP.0000000000003507


33. Pisanti S., Deelen J., Gallina A.M., Caputo M., Citro M., Abate M. et al. , Correlation of the two most frequent HLA haplotypes in the Italian population to the differential regional incidence of COVID-19. J. Transl. Med. 2020; 18: 352–61. DOI: 10.1186/s12967-020-02515-5


34. Ng M.H.L., Lau K.M., Li L., Cheng S.H., Chan W.Y., Hui P.K. et al. Association of human-leukocyte-antigen class I (B*0703) and class II (DRB1*0301) genotypes with susceptibility and resistance to the development of severe acute respiratory syndrome. J. Infect. Dis. 2004; 190(3): 515–8. DOI: 10.1086/421523


35. Lin M., Tseng H.K., Trejaut J.A., Lee H.L., Loo J.H., Chu C.C. et al. Association of HLA class I with severe acute respiratory syndrome coronavirus infection. BMC Med. Genet. 2003; (4): 9. DOI: 10.1186/1471-2350-4-9


36. Chen Y.M.A., Liang S.Y., Shih Y.P., Chen C.Y., Lee Y.M., Chang L. et al. Epidemiological and genetic correlates of severe acute respiratory syndrome coronavirus infection in the hospital with the highest nosocomial infection rate in Taiwan in 2003. J, Clin. Microbiol. 2006; 44(2): 359–65. DOI:10.1128/JCM.44.2.359-365.2006.


37. Shkurnikov M., Nersisyan S., Jankevic T., Galatenko A., Gordeev I., Vechorko V. et al. Association of HLA Class I Genotypes With Severity of Coronavirus Disease-19. Front. Immunol. 2021; 12: 641900. DOI:10.3389/fimmu.2021.641900


38. Merad M., Martin J.C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nature Reviews Immunology 2020; 20(6): 355–62. DOI:10.1038/s41577-020-0331-4


39. Udomsinprasert W., Jittikoon J., Sangroongruangsri S., Chaikledkaew U. Circulating levels of interleukin-6 and interleukin-10, but not tumor necrosis factoralpha, as potential biomarkers of severity and mortality for COVID-19: systematic review with meta-analysis. J. Clin. Immunol. 2021; 41(1): 11–22. DOI: 10.1007/s10875-020-00899-z


40. Sinha P., Calfee C. S., Cherian S., Brealey D., Cutler S., King C. et al. Prevalence of phenotypes of acute respiratory distress syndrome in critically ill patients with COVID-19: a prospective observational study. Lancet Respir. Med. 2020; 8(12): 1209–18. DOI: 10.1016/S2213-2600(20)30366-0


41. Lazear H.M., Schoggins J.W., Diamond M.S. Shared and distinct functions of type I and type III interferons. Immunity 2019; 50(4): 907–23. DOI: 10.1016/j.immuni.2019.03.025


42. Chu H., Chan J. F., Wang Y., Yuen T. T., Chai Y., Hou Y. et al. Comparative Replication and Immune Activation Profiles of SARS-CoV-2 and SARS-CoV in Human Lungs: An Ex Vivo Study With Implications for the Pathogenesis of COVID-19. Clin. Infect. Dis. 2020; 71(6): 1400–9. DOI:10.1093/cid/ciaa410


43. Blanco-Melo D., Nilsson-Payant B.E., Liu W.C., Uhl S., Hoagland D., Moller R. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 2020; 181(5): 1036–45. DOI: 10.1016/j.cell.2020.04.026


44. Hadjadj J., Yatim N., Barnabei L., Corneau A., Boussier J., Smith N. et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 2020; 369(6504): 718–24. DOI:10.1126/science.abc6027


45. Domizio J.D., Gulen M.F., Saidoune F., Thacker V.V., Yatim A., Sharma K. et al. The cGAS-STING pathway drives type I IFN immunopathology in COVID-19. Nature 2022; 603(7899): 145–51. doi: 10.1038/s41586-022-04421-w


46. Lee J.S., Park S., Jeong H.W., Ahn J.Y., Choi S.J., Lee H. Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID- 19. Sci. Immunol. 2020; 5(49): eabd1554. DOI: 10.1126/sciimmunol.abd1554


47. Agwa S.H.A., Kamel M.M., Elghazaly H., Abd Elsamee A.M., Hafez H., Girgis S.A. et al. Association between Interferon-Lambda-3 rs12979860, TLL1 rs17047200 and DDR1 rs4618569 Variant Polymorphisms with the Course and Outcome of SARS-CoV-2 Patients. Genes 2021; (12): 830–42. DOI:10.3390/genes12060830


48. Majidpoor J., Mortezaee K. Interleukin-6 in SARS-CoV-2 induced disease: Interactions and therapeutic applications. Biomed Pharmacother. 2022; 145: 112419. doi: 10.1016/j.biopha.2021.112419


49. Strafella C., Caputo V., Termine A., Barati S., Caltagirone C., Giardina E. et al. Investigation of genetic variations of IL6 and IL6r as potential prognostic and pharmacogenetics biomarkers: Implications for covid-19 and neuroinflammatory disorders. Life 2020; (10): 1–10. DOI:10.3390/life10120351


50. Medetalibeyoglu A., Bahat G., Senkal N., Kose M., Avci K., Sayin G.Y. et al. Mannose binding lectin gene 2 (rs1800450) missense variant may contribute to development and severity of COVID-19 infection. Infection, Genetics and Evolution 2021; 89: 104717. DOI: 10.1016/j.meegid.2021.104717


About the Autors


Professor Zaira F. Kharaeva, MD, Head, Department of Microbiology, Virology and Immunology, H.M. Berbekov Kabardino-Balkarian State University, Nalchik, Russia; irafe@yandex.ru; https://orcid.org/0000-0003-2302-2491
Diana V. Degoeva, Resident Physician, Department of General Medical Training and Medical Rehabilitation, Kh.M. Berbekov Kabardino-Balkarian State University, Nalchik, Russia; degoevadiana69@gmail.com; https://orcid.org/0000-0002-6162-6205
Professor Madina Yu. Marzhokhova, MD. Head, Department of Infectious Diseases, H.M. Berbekov Kabardino-Balkarian State University, Nalchik, Russia; madina010@list.ru; https://orcid.org/0000-0002-5677-5249
Asiyat R. Marzhokhova, Cand. Med. Sci, Аssociate Professor, Department of Infectious Diseases, H.M. Berbekov Kabardino-Balkarian State University, Nalchik, Russia; asya_marzhoh@mail.ru; https://orcid.org/0000-0003-4207-5919


Similar Articles


Бионика Медиа