СOVID-19 как вероятный триггерный фактор аутоиммунных заболеваний у детей


DOI: https://dx.doi.org/10.18565/epidem.2022.12.1.93-100

Карпович Г.С., Куимова И.В., Серова Ю.С.

1) Новосибирский государственный медицинский университет Минздрава России, Новосибирск, Россия; 2) Детская городская клиническая больница № 3, Новосибирск, Россия
Появление SARS-CoV-2 привело к возникновению крупнейшей в новейшей истории пандемии с развитием колоссального количества тяжелых случаев инфекции и летальных исходов. На фоне общей печальной статистики относительно благополучно выглядела ситуация по COVID-19 в педиатрической практике. Она характеризовалась большой долей бессимптомного и легкого течения, значительно меньшими показателями заболеваемости, а тем более летальности. Но такое «мнимое» благополучие вскоре сменилось настораживающей тенденцией. У детей начали регистрироваться формы отсроченного полиорганного поражения воспалительного генеза – так называемые мультисистемные COVID-19-ассоциированные воспалительные синдромы (Multisystem inflammatory syndrome in children – MIS-C). Помимо MIS-С, не исключена и роль COVID-19 как некоего триггера в развитии различных аутоиммунных патологий. Долгосрочное катамнестическое наблюдение за пациентами детского возраста, перенесшими COVID-19, в настоящее время фактически отсутствует в силу объективных причин. В статье приведены клинические наблюдения развития аутоиммунных патологий у детей после перенесенного COVID-19. Обсуждается роль инфекции, вызванной SARS-CoV-2, как триггера развития аутоиммунной патологии.

Литература




  1. Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV). World Health Organization, 2019. https://www.who.int/news-room/detail/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov)

  2. WHO Director-General’s opening remarks at the media briefing on COVID-19 –11 March 2020. World Health Organization, 2019. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020.

  3. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). ArcGIS. Johns Hopkins University, 2020. https://gisanddata.maps.arcgis.com/ apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6.

  4. Livingston E., Bucher K. Coronavirus disease 2019 (COVID-19) in Italy. JAMA 2020; 323(14): 1335. doi: 10.1001/jama.2020.4344

  5. The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases COVID-19-China. CCDC Weekly 2020; (2): 1–10. http://weekly.chinacdc.cn/en/article/id/e53946e2-c6c4-41e9-9a9b-fea8- db1a8f51

  6. Tezer H., Bedir Demirdağ T. Novel coronavirus disease (COVID-19) in children. Turk. J. Med. Sci. 2020; 50(SI-1): 592–603. doi: 10.3906/sag-2004-174

  7. Yasuhara J., Kuno T., Takagi H., Sumitomo N. Clinical characteristics of COVID-19 in children: A systematic review. Pediatr. Pulmonol. 2020 ; 55(10): 2565–75. doi: 10.1002/ppul.24991

  8. Горелов А.В., Николаева С.В., Акимкин В.Г. Новая коронавирусная инфекция COVID-19: особенности течения у детей в Российской Федерации. Педиатрия. Журнал им. Г.Н. Сперанского 2020; 99 (6): 57–62. doi: 10.24110/0031-403X-2020-99-6-57-62

  9. Краснова Е.И., Карпович Г.С., Комиссарова Т.В., Извекова И.Я., Михайленко М.А., Серова Ю.С., Шестаков А.Е. Особенности течения COVID-19 у детей различных возрастных групп. Педиатрия. Журнал им. Г.Н. Сперанского 2020; 99(6): 141–7. doi: 10.24110/0031-403X-2020-99-6-141-147

  10. Radia T., Williams N., Agrawal P., Harman K., Weale J., Cook J., Gupta A. Multi-system inflammatory syndrome in children & adolescents (MIS-C): A systematic review of clinical features and presentation. Paediatr. Respir. Rev. 2021; 38(35): 51–7. doi: 10.1016/j.prrv.2020.08.001

  11. Nakra N.A., Blumberg D.A., Herrera-Guerra A., Lakshminrusimha S. Multi-System Inflammatory Syndrome in Children (MIS-C) Following SARS-CoV-2 Infection: Review of Clinical Presentation, Hypothetical Pathogenesis, and Proposed Management. Children (Basel) 2020; 7 (7): 69. doi: 10.3390/children7070069

  12. Fujimaru T., Ito S., Masuda H., Oana S., Kamei K., IshiguroA., Kato H., Abe J. Decreased levels of inflammatory cytokines in immunoglobulin-resistant Kawasaki disease after plasma exchange. Cytokine 2014; 70 (2): 156–60. doi: 10.1016/j.cyto.2014.07.003

  13. Giamarellos-Bourboulis E.J., Netea M.G., Rovina N., Akinosoglou K., Antoniadou A., Antonakos N. et al. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host. Microbe 2020; 27(6): 992–1000.e3. doi: 10.1016/j.chom.2020.04.009

  14. Galeotti C., Bayry J. Autoimmune and inflammatory diseases following COVID-19. Nat. Rev. Rheumatol. 2020; 16 (8): 413–14. doi: 10.1038/s41584-020-0448-7

  15. Askanase A.D., Khalili L., Buyon J.P. Thoughts on COVID-19 and autoimmune diseases. Lupus Sci Med. 2020; 7 (1): e000396. doi: 10.1136/lupus-2020-000396

  16. Cañas C.A. The triggering of post-COVID-19 autoimmunity phenomena could be associated with both transient immunosuppression and an inappropriate form of immune reconstitution in susceptible individuals. Med. Hypotheses 2020; 145: 110345. doi: 10.1016/j.mehy.2020.110345

  17. Liu Y., Sawalha A.H., Lu Q. COVID-19 and autoimmune diseases. Curr. Opin. Rheumatol. 2020; Publish Ahead of Print. doi: 10.1097/BOR.0000000000000776

  18. Lazarian G., Quinquenel A., Bellal M., Siavellis J., Jacquy C., Re D. et al. Autoimmune haemolytic anaemia associated with COVID-19 infection. Br. J. Haematol. 2020; 190 (1): 29–31. doi: 10.1111/bjh.16794

  19. Zulfiqar A.-A., Lorenzo-Villalba N., Hassler P., AndrèsE. Immune thrombocytopenic purpura in a patient with COVID-19. N. Engl. J. Med. 2020; 382: e43. doi: 10.1056/NEJMc2010472

  20. Dalakas M.C. Guillain-Barré syndrome: The first documented COVID-19-triggered autoimmune neurologic disease: More to come with myositis in the offing. Neurol. Neuroimmunol. Neuroinflamm. 2020; 7 (5): e781. doi: 10.1212/NXI.0000000000000781

  21. Rojas M., Restrepo-Jiménez P., Monsalve D.M., Pacheco Y., Acosta-Ampudia Y., Ramírez-Santana C. et al. Molecular mimicry and autoimmunity. J. Autoimmun. 2018; 95: 100–23. doi: 10.1016/j.jaut.2018.10.012

  22. Pacheco Y., Acosta-Ampudia Y., Monsalve D.M., Chang C., Gershwin J.-M. Anaya Bystander activation and autoimmunity. J. Autoimmun. 2019: 103. 102301. doi: 10.1016/j.jaut.2019.06.012

  23. Lucchese G., Flöel A. Molecular mimicry between SARS-CoV-2 and respiratory pacemaker neurons. Autoimmun. Rev. 2020; 19 (7): 102556. doi: 10.1016/j.autrev.2020.102556

  24. Kanduc D., Shoenfeld Y. On the molecular determinants of the SARS-CoV-2 attack. Clin. Immunol. 2020; 215: 108426. doi: 10.1016/ j.clim.2020.108426

  25. Vojdani A., Kharrazian D. Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases. Clin. Immunol. 2020; 217: 108480. doi: 10.1016/j.clim.2020.108480



Об авторах / Для корреспонденции


Карпович Глеб Сергеевич – ассистент кафедры инфекционных болезней, Новосибирский государственный медицинский университет; врач-инфекционист, Детская городская клиническая больница № 3, Новосибирск, Россия; karpovich.gleb@yandex.ru; http://orcid.org/0000-0003-0982-6952
Куимова Ирина Валентиновна – д.м.н., доцент, профессор кафедры инфекционных болезней, Новосибирский государственный медицинский университет, Новосибирск, Россия; kuimova_ira@mail.ru; http://orcid.org/0000-0003-4727-1636
Серова Юлия Сергеевна – врач-инфекционист, Детская городская клиническая больница № 3, Новосибирск, Россия; dgkb3@nso.ru; http://orcid.org/0000-0003-2521-4761


Похожие статьи


Бионика Медиа