Use of allokin-alpha in the treatment of chronic herpesvirus infection in adults


DOI: https://dx.doi.org/10.18565/epidem.2019.9.4.84-94

Rakitianskaya I.A., Riabova T.S., Kalashnikovа A.A.

1) City Outpatient Unit of Allergology, Immunology, and Clinical Transfusiology, City Polyclinic One Hundred and Twelve, Saint Petersburg, Russia; 2) S.M. Kirov Military Medical Academy, Saint Petersburg, Russia; 3) A.M. Nikiforov All-Russian Center of Emergency and Radiation Medicine, Russian Ministry for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters, Saint Petersburg, Russia
Objective. To evaluate the efficiency of allokin-alpha therapy on the level of isolation of Epstein-Barr virus (EBV) and herpes simplex virus type 6 (HHV-6) DNA copy numbers in saliva samples, on the time course of changes in the production of IFN-α and IFN-γ and on that of clinical complaints in patients with chronic fatigue syndrome in the presence of chronic EBV and HHV-6 infections.
Subjects and methods. A total of 53 patients (36 women and 17 men) with with chronic fatigue syndrome in the presence of chronic herpesvirus infection were examined; the patients’ their mean age was 34.51 ± 1.74 years. All the patients underwent determination of the amount of EBV and HHV-6 DNA in their saliva samples by polymerase chain reaction (PCR) and the blood levels of IFN-α and IFN-γ, and the spontaneous and induced production of these cytokines in the blood lymphocyte cultures. All the patients received allokin-alpha therapy with 9 subcutaneous injections of 1.0 mg every other day. The patients were divided into three groups: 1) 26 patients with chronic EBV infection; 2) 18 patients with EBV + HHV-6 co-infection; 3) 9 patients with HHV-6 infection.
Results. After allokin-alpha therapy, in Group 1, EBV DNA was PCR negative in 57.69% of patients; in Group 3, that was positive in all patients. In Group 2, EBV and HHV-6 DNA was found to be absent in 44.44 and 5.55% of patients, respectively. In all the groups, the serum and spontaneous production of IFN-α did not change significantly one month after the end of therapy. The level of induced IFN-α tended to decrease. IFN-γ production also tended to reduce in all the groups. After the end of therapy, the patients in all the groups showed a significant decline in the number of clinical complaints.
Conclusion. The efficiency of allokin-alpha therapy varies in patients with chronic herpesvirus infection and depends upon virus type. The greatest efficacy of the drug was found in patients with EBV infection.

Literature


  1. Cuomo L., Angeloni A., Zompetta C., Cirone M., Calogero A., Frati L., Ragona G., Faggioni A. Human herpesvirus 6 variant A, but not variant B, infects EBV-positive B lymphoid cells, activating the latent EBV genome through a BZLF-1-dependent mechanism. AIDS Res. Hum. Retrovir. 1995; (11): 1241–5.

  2. Flamand L., Menezes J. Cyclic AMP-responsive element-dependent activation of Epstein-Barr virus zebra promoter by human herpesvirus 6. J. Virol. 1996; 70(3): 1784–91.

  3. Flamand L., Stefanescu L.I., Ablashi D.V., Menezes J. Activation of the Epstein-Barr virus replicative cycle by human herpesvirus 6. J. Virol. 1993; 67: 6768–77.

  4. Bertram G.N., Dreiner G.R., Krueger A., Ramon D.V., Ablashi S., Salahuddin Z., Balachandram N. Frequent double infection with Epstein-Barr virus and human herpesvirus-6 in patients with acute infectious mononucleosis. In Vivo 1991; (5): 271–27.

  5. Pellett P.E., Ablashi D.V., Ambros P.F., Agut H., Caserta M.T., Descamps V. et al. Chromosomally integrated human herpesvirus 6: questions and answers. Rev. Med. Virol. 2012; 22(3): 144–55. DOI: 10.1002/rmv.715.

  6. Fitzgerald-Bocarsly P., Dai J., Singh S. Plasmacytoid dendritic cells and type I IFN: 50 years of convergent history. Cytokine Growth Factor Rev. 2008; 19: 3–19. DOI:10.1016/j.cytogfr.2007.10.006.

  7. Ivashkiv L.B., Donlin L.T. Regulation of type I interferon responses. Nat. Rev. Immunol. 2014; 14: 36–49. DOI:10.1038/nri3581.

  8. Areste C., Blackbourn D.J. Modulation of the immune system by Kaposi’s sarcoma-associatedherpesvirus. Trends Microbiol. 2009; 17: 119–29. DOI:10.1016/j.tim.2008.12.001.

  9. Fenimore J., Young H.A. Regulation of interferon-γ expression. Adv. Exp. Med. Biol. 2016; 941: 1–19.

  10. Bernabei P., Allione A., Rigamonti L., Bosticardo M., Losana G., Borghi I., Forni G., Novelli F. Regulation of interferon-gamma receptor (INF-gammaR) chains: a peculiar way to rule the life and death of human lymphocytes. Eur. Cytokine Netw. 2001; 12(1): 6–14.

  11. Randall R.E., Goodbourn S. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures . J. Gen. Virol. 2008; 89: 1–47. DOI: 10.1099/vir.0.83391-0

  12. Thomas D., Blakqori G., Wagner V., Banholzer M., Kessler N., Elliott R.M., Haller O., Weber F. Inhibition of RNA polymerase II phosphorylation by a viral interferon antagonist. J. Biol. Chem. 2004; 279: 31471–7.

  13. Haller O., Kochs G., Weber F. The interferon response circuit: Induction and suppression by pathogenic viruses. Virology 2006; 344 (Issue 1): 119–30. https://doi.org/10.1016/j.virol.2005.09.024

  14. Shabman R.S., Morrison T.E., Moore C., White L., Suthar M.S., Hueston L., Rulli N., Lidbury B., Ting J.P. Differential induction of type I interferon responses in myeloid dendritic cells by mosquito and mammalian-cell-derived alphaviruses. J. Virol. 2007; 81: 237–47.

  15. Carlos T.S., Fearns R., Randall R.E. Interferon-induced alterations in the pattern of parainfluenza virus 5 transcription and protein synthesis and the induction of virus inclusion bodies. J. Virol. 2005; 79: 14112––21.

  16. Langland J.O., Cameron J.M., Heck M.C., Jancovich J.K., Jacobs B. L. Inhibition of PKR by RNA and DNA viruses. Virus Res. 2006; 119: 100–10.

  17. Xu D., Brumm K., Zhang L. The latent membrane protein 1 of Epstein-Barr virus (EBV) primes EBV latency cells for type I interferon production. J. Biol. Chem. 2006; 281: 9163–9.

  18. Mayne M., Cheadle C., Soldan S., Cermelli C., Yamano Y., Akhyani N., Nagel J. E., Taub D.D., Becker K.G., Jacobson S. Gene expression profile of herpesvirus-infected T cells obtained using immunomicroarrays: induction of proinflammatory mechanisms. J. Virol. 2001; 75: 11641–50.

  19. Сологуб Т.В., Цветков В.В., Деева Э.Г. Интерферон-гамма – цитокин с противовирусной, иммуномодулирующей и противоопухолевой активностью. Российский медико-биологический вестник имени академика И.П. Павлова 2014; (3): 56–60.Sologub T.V., Tsvetkov V.V., Deeva E.G. Interferon-gamma – cytokine with antiviral, immunomodulating and antitumor activity. Rossiyskiy mediko-biologicheskiy vestnik imeni akademika I.P. Pavlova 2014; (3): 56–60. (In Russ.).

  20. Kuczer M., Dziubasik K., Midak-Siewirska A., Zahorska R., Łuczak M., Konopińska D. Studies of insect peptides alloferon, Any-GS and their analogues. Synthesis and antiherpes activity. J. Pept. Sci. 2010; 16(4): 186–9.

  21. Kuczer M., Majewska A., Zahorska R. New alloferon analogues: synthesis and antiviral properties. Chem. Biol. Drug Des. 2013; 81(2): 302–9. DOI: 10.1111/cbdd.12020

  22. Kuczer M., CzarniewskaА., Majewska A., Różanowska M., Rosiński G., Lisowski M. Novel analogs of alloferon: Synthesis, conformational studies, pro-apoptotic and antiviral activity. Bioorg. Chem. 2016; 66: 12–20. DOI: 10.1016/j.bioorg.2016.03.002

  23. Fukuda K., Straus S.E., Hickie I., Sharpe M.C., Dobbins J.G., Komaroff A. The chronic fatigue syndrome: a comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann. Intern. Med. 1994; 121(12): 953–9. DOI:10.7326/0003-4819-121-12-199412150-00009

  24. Holmes G.P., Kaplan J.E., Gantz N.M., Komaroff A.L., Schonberger L.B., Straus S.E., Jones J.F., Dubois R.E., Cunningham-Rundles C., Pahwa S. Chronic fatigue syndrome: a working case definition. Ann. Intern. Med. 1988; 108(3): 387–9.

  25. Staines D.R. Postulated Vasoactive Neuropeptide Autoimmunity in Fatigue-Related Conditions: A Brief Review and Hypothesis. Clin. Dev. Immunol. 2006; 13(1): 25–39. DOI: 10.1080/17402520600568252

  26. Griffith J.P., Zarrouf А. A systematic review of chronic fatigue syndrome: don’t assume it′s depression. J. Clin. Psychiatry 2008; (1): 120–8. DOI: 10.4088/pcc.v10n0206

  27. Kimura H., Cohen J.I. Chronic Active Epstein–Barr Virus Disease. Front. Immunol. 2017; 28: 1–6. https://doi.org/10.3389/fimmu.2017.01867

  28. Kimura H. Pathogenesis of chronic active Epstein–Barr virus infection: is this an infectious disease, lymphoproliferative disorder, or immunodeficiency? Rev. Med. Virol. 2006; 16: 251–61. DOI:10.1002/rmv.505

  29. Kimura H., Morishima T., Kanegane H., Ohga S., Hoshino Y., Maeda A. Prognostic factors for chronic active Epstein-Barr virus infection. J. Infect. Dis. 2003; 187: 527–33. DOI:10.1086/367988

  30. De Bolle L., Naesens L., De Clercq E. Update on human herpesvirus 6 biology, clinical features, and therapy. Clin. Microbiol. Rev. 2005; 18: 217–45.

  31. De Filippis L., Foglieni C., Silva S., Vescovi A.L., Lusso P., Malnati M.S. Differentiated human neural stem cells: a new ex vivo model to study HHV-6 infection of the central nervous system. J. Clin. Virol. 2006; 37(Suppl 1): 27–32.

  32. Kwok H., Chan K.W., Chan K.H., Chiang A.K. Distribution, persistence and interchange of Epstein-Barr virus strains among PBMC, plasma and saliva of primary infection subjects. PLoSOne 2015; 10(3): e0120710

  33. De Clerq E. Antivirals: current state of the art. Future Virol. 2008; 3(4): 393–405. DOI: 10.2217/17460794.3.4.393

  34. Findlay E.G., Currie S.M., Davidson D.J. Cationic host defence peptides: potential as antiviral therapeutics. BioDrugs 2013; 27: 479–93. DOI: 10.1007/s40259-013-0039-0

  35. Chernysh S., Kim S. I., Bekker G., Pleskach V.A., Filatova N.A., Anikin V.B., Platonov V.G., Bulet P. Antiviral and antitumor peptides from insects. Proc. Natl. Acad. Sci. USA 2002; 99(20): 12628–32. DOI: [10.1073/pnas. 192301899]

  36. Lee N., Bae S., Kim H., Kong J.M., Kim H.R., Cho B.J., Kim S.J., Seok S.H., Hwang Y.I., Kim S., Kang J.S., Lee W.J. Inhibition of lytic reactivation of Kaposi’s sarcoma-associated herpesvirus by alloferon. Antivir. Ther. 2011; 16: 17–26. DOI: 10.3851/IMP1709

  37. Bae S., Oh K., Kim H., Kim Y., Kim H.R., Hwang Y.I., Lee D.S., Kang J.S., Lee W.J. The effect of alloferon on the enhancement of NK cell cytotoxicity against cancer via the up-regulation of perforin/granzyme B secretion. Immunobiology 2013; 218(8): 1026–33. DOI: 10.1016/j.imbio.2012.12.002

  38. Kim Y., Lee S.K., Bae S., Kim H., Park Y., Chu N.K., Kim S.G., Kim H.R., Hwang Y.I., Kang J.S., Lee W.J. The anti-inflammatory effect of alloferon on UVB-induced skin inflammation through the down-regulation of pro-inflammatory cytokines. Immunol. Lett. 2013; 149: 110–18.

  39. Agut H., Bonnafous P., Gautheret-Dejean A. Human Herpesviruses 6A, 6B, and 7. Microbiol. Spectr. 2016; 4(3). DOI: 10.1128/microbiolspec.DMIH2-0007-2015

  40. Коновалова Н.В., Храменко Н.И., Величко Л.Н., Юрченко Л.А. Роль уровня интерферонов-α и -γ в крови больных увеитами вирусной этиологии под влиянием лечения препаратом аллокин-альфа. Точка зрения. Восток –Запад 2018; (4): 26–9. DOI: https://doi.org/10.25276/ 2410-1257-2018-4-26-29Konovalova N.V., Khramenko N.I., Velichko L.N., Iurchenko L.A.Тhe role of the level of interferons α and γ in blood of patients with uveitis of viral etiology under the influence of treatment with the allokin-alpha. Tochka zreniia. Vostok–Zapad 2018; (4): 26–9. (In Russ.). DOI: https://doi org 10 25276 2410-1257-2018-4-26-29

  41. Зароченцева Н.В., Аркашян А.К., Титченко Ю.П.. Меньшикова Н.С., Баринова И.В., Ушакова С.В. Применение препарата аллокина-альфа в комплексной терапии пациенток с хроническим эндометритом и привычным невынашиванием беременности. Российский вестник акушера-гинеколога 2014; (4): 73–80.Zarochentseva N.V., Arkashian A.K., Titchenko Yu.P., Menshikova N.S., Barinova I.V., Ushakova S.V. Use of the drug allokina-alpha in the complex therapy of patients with chronic endometritis and recurrent miscarriage. Rossiiskii vestnik akushera-ginekologa 2014; (4): 73–80. (In Russ.).

  42. Черныш С.И. Аллокины (цитокиноподобные пептиды насекомых) как модуляторы иммунного ответа человека и других млекопитающих. Российский иммунологический журнал 2004; (9): 36.Chernysh S.I. Alloquins (cytokine-like peptides of insects) as modulators of the immune response of humans and other mammals. Russian Journal of Immunology 2004; (9): 36. (In Russ.).

  43. Haller O., Weber F. The interferon response circuit in antiviral host defense. Verh. К Acad. Geneeskd Belg. 2009; 71(1–2): 73–86.


About the Autors


Prof. Irina A. Rakitianskaya, MD, Clinical Immunologist; Professor, Outpatient Unit of Allergology, Immunology, and Clinical Transfusiology, City Polyclinic One Hundred and Twelve, Saint Petersburg, Russia; e-mail: tat-akyla@inbox.ru; ORCID: https://orcid.org/0000-0003-2524-4602
Tatiana S. Riabova, MD, Nephrologist; Associate Professor, Department of Nephrology and Efferent Therapy, S.M. Kirov Military Medical Academy; Consulting Cardiologist, Outpatient Unit of Allergology, Immunology, and Clinical Transfusiology, City Polyclinic One Hundred and Twelve, Saint Petersburg, Russia; e-mail:tita74@ mail.ru; ORCID: https://orcid.org/0000-0001-9543-9646
Anastasia A. Kalashnikova, Cand Biol. Sci., Senior Researcher, Laboratory of Clinical Immunology, A.M. Nikiforov All-Russian Center of Emergency and Radiation Medicine, Russian Ministry for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters, Saint Petersburg, Russia; e-mail: petkova_nas@mail.ru; ORCID: https://orcid.org /0000-0002-5338-0866.


Similar Articles


Бионика Медиа