The impact of the COVID-19 pandemic on the structure of intestinal microbiocenosis


DOI: https://dx.doi.org/10.18565/epidem.2023.13.2.70-5

Bityumina L.A., Kulikova N.G., Ploskireva A.A., Gorelov A.V.

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being, Moscow, Russia
Objective. To compare the epidemiological regularities of the prevalence of intestinal microbiocenotic disorders among the population of the Russian Federation before and during the pandemic of the new SARS-CoV-2 coronavirus infection.
Subjects and methods. The results of examinations for intestinal microbiocenotic disorders were retrospectively analyzed among 72,798 patients aged 1 to 60 years in the periods of 01.2018–03.2020 and 04.2020–12.2022. Inoculation of the clinical material on the nutrient media and accounting the results were performed by traditional microbiological methods. The data were statistically analyzed using the standard methods of descriptive statistics by the program Microsoft Office Excel 2010. The mean values were estimated taking into account the 95% confidence interval (95% CI) by the Klopper-Pearson method.
Results. The age group of 1 year to 60 years showed an increase in the incidence of intestinal microbiocenotic disorders during the COVID-19 pandemic compared to the years before the pandemic. In 2018 to the early 2020, the rate did not exceed 2.4±0.02%, from 04.2020 it increased to 77.9 ± 0.08%. The pandemic substantially changed the intestinal microbiocenosis towards the predominance of opportunistic (Klebsiella spp., Enterobacter spp., Proteus spp.) and pathogenic (Salmonella spp., Shigella spp.) floras.
Conclusion. The indicators of intestinal microbiocenosis in patients aged 1 to 60 years before the pandemic of the new coronavirus infection COVID-19 and during the pandemic differ significantly: there is a shift towards an increase in dysbiosis caused by the growth of opportunistic and pathogenic flora in the presence a decrease in obligate symbionts of bifidobacteria, lactobacilli, enterococci and typical E. coli. Various genotypes of the SARS-CoV-2 virus were found to have a destructive effect on intestinal microbiocenosis, which appeared as a damage in the philometabolic nucleus, which may be associated with both the extensive use of antibiotics and the damaging effect of the virus on the intestine.

Literature


1. Yeoh Y.K., Zuo T., Lui G.C., Zhang F., Liu Q., Li A.Y. et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 2021; 70(4): 698–706. doi: 10.1136/gutjnl-2020-323020


2. Mohapatra R.K., Pintilie L., Kandi V., Sarangi A.K., Das D., Sahu R. et al. The recent challenges of highly contagious COVID-19, causing respiratory infections: Symptoms, diagnosis, transmission, possible vaccines, animal models, and immunotherapy. Chem. Biol. Drug. Des. 2020; 96(5): 1187–208. doi: 10.1111/cbdd.13761


3. Umakanthan S., Sahu P., Ranade A.V., Bukelo M.M., Rao J.S., Abrahao-Machado L.F. et al. Origin, transmission, diagnosis and management of coronavirus disease 2019 (COVID-19). Postgrad. Med. J. 2020; 96(1142): 753–8. doi: 10.1136/postgradmedj-2020-138234


4. Davis H.E., McCorkell L., Vogel J.M., Topol E.J. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023; 21(3): 133–46. doi: 10.1038/s41579-022-00846-2


5. Farsi Y., Tahvildari A., Arbabi M., Vazife F., Sechi L.A., Shahidi Bonjar A.H. et al. Diagnostic, Prognostic, and Therapeutic Roles of Gut Microbiota in COVID-19: A Comprehensive Systematic Review. Front Cell Infect. Microbiol. 2022; (12) : 804644. doi: 10.3389/fcimb.2022.804644


6. Куликова Н.Г., Плоскирева А.А., Тронза Т.В., Усенко Д.В., Горелов А.В., Акимкин В.Г. Характеристика микробиоценоза кишечника населения в различных возрастных группах во время эпидемии COVID-19. Инфекционные болезни 2022; (4): 78–83.


Kulikova N.G., Ploskireva A.A., Tronza T.W., Usenko D.V., Gorelov A.V., Akimkin V.G. [Characteristics of intestinal microbiocenosis of the population in different age groups in the COVID-19 pandemic]. Infectious Diseases 2022; (4): 78–83. (In Russ.).


7. Yamamoto S., Saito M., Tamura A., Prawisuda D., Mizutani T., Yotsuyanagi H. The human microbiome and COVID-19: A systematic review. PLoS One 2021; 16(6): e0253293. doi: 10.1371/journal.pone. 0253293


8. Бочков И.А., Юрко Л.П., Шуралева С.А., Юдицкая Н.М., Лавренова Э.С., Плахтий И.В. и др. Особенности микробной экологии толстой кишки у детей до 2 лет. Эпидемиология и инфекционные болезни 2012; (5): 29–33.


Bochkov I.A., Yurko L.P., Shuraleva S.A., Yuditskaya N.M., Lavrenova E.S., Plakhtiy I.V. et al. [Features of the microbial ecology of the colon in children under 2 years]. Epidemiology and infectious diseases 2012; (5): 29–33. (In Russ.).


9. Zhang F., Lau R.I., Liu Q., Su Q., Chan F.K.L., Ng S.C. Gut microbiota in COVID-19: key microbial changes, potential mechanisms and clinical applications. Nat. Rev. Gastroenterol. Hepatol. 2022: 1–15. doi: 10.1038/s41575-022-00698-4


10. Kim S., Covington A., Pamer E.G. The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunol. Rev. 2017; 279(1): 90–105. doi: 10.1111/imr.12563


11. Borriello S.P., Honour P. Simplified procedure for the routine isolation of Clostridium difficile from faeces. J. Clin. Pathol. 1981; 34(10): 1124–7. doi: 10.1136/jcp.34.10.1124


12. Rachina S., Kozlov R., Kurkova A., Portnyagina U., Palyutin S., Khokhlov A. et al. On Behalf Of Russian Working Group Of The Project. Antimicrobial Dispensing Practice in Community Pharmacies in Russia during the COVID-19 Pandemic. Antibiotics (Basel). 2022; 11(5): 586. doi: 10.3390/antibiotics11050586


13. Акимкин В.Г., Попова А.Ю., Хафизов К.Ф., Дубоделов Д.В., Углева С.В., Семененко Т.А. и др. COVID-19: эволюция пандемии в России. Сообщение II: динамика циркуляции геновариантов вируса SARS-CoV-2. Журнал микробиологии, эпидемиологии и иммунобиологии 2022; 99(4): 381–96. doi: 10.36233/0372-9311-295


Akimkin V.G., Popova A.Y., Khafizov K.F., Dubodelov D.V., Ugleva S.V., Semenenko T.A. et al. [COVID-19: evolution of the pandemic in Russia. Report II: dynamics of the circulation of SARS-CoV-2 genetic variants]. Journal of microbiology, epidemiology and immunobiology 2022; 99(4): 381–96. (In Russ.). doi: 10.36233/0372-9311-295


14. Gang J., Wang H., Xue X., Zhang S. Microbiota and COVID- 19: Long-term and complex influencing factors. Front. Microbiol. 2022;13: 963488. doi: 10.3389/fmicb.2022.963488


15. Giannos P., Prokopidis K. Gut dysbiosis and long COVID- 19: Feeling gutted. J. Med. Virol. 2022; 94(7): 2917–8. doi: 10.1002/jmv.2768435233795; PMCID: PMC9088471.


About the Autors


Lyutsia A. Bityumina, Bacteriologist in Clinical Microbiology, Laboratory for Clinical Microbiology and Human Microbial Ecology, Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being, Moscow, Russia; bitumina@cmd.su; https://orcid.org/ 0000-0002-5378-0827
Nina G. Kulikova, Cand. Biol. Sci.; Senior Researcher in Clinical Microbiology, Senior Researcher in Clinical Microbiology, Laboratory for Clinical Microbiology and Human Microbial Ecology, Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being, Moscow, Russia; kulikova_ng@cmd.su; https://orcid.org/0000-0002-1716-6969
Professor Antonina A. Ploskireva, MD, Deputy Director in Clinical Work, Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being, Moscow, Russia; antoninna@mail.ru; https://orcid.org/0000-0002-3612-1889
Professor Aleksandr V. Gorelov, MD, Academician of the Russian Academy of Sciences, Deputy Director for Scientific Work, Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being, Moscow, Russia; zdn@pcr.ru; https://orcid.org/0000-0001-9257-0171


Similar Articles


Бионика Медиа