Molecular genetic mechanisms of drug resistance in Plasmodium falciparum


DOI: https://dx.doi.org/10.18565/epidem.2020.10.4.80-7

Solovyev A.I., Uskov A.N., Kovalenko A.N., Kapatsyna V.A., Rakin A.I.

1) S.M. Kirov Military Medical Academy, Ministry of Defense of the Russian Federation, Saint Petersburg, Russia; 2) Pediatric Research and Clinical Center for Infectious Diseases, Federal Biomedical Agency of Russia, Saint Petersburg, Russia; 3) S.P. Botkin Clinical Infectious Diseases Hospital, Saint Petersburg, Russia
Objective. To investigate the metabolic characteristics of P. falciparum, the pharmacological action of antimalarial drugs, and the molecular genetic mechanisms of drug resistance in the malaria pathogen P. falciparum.
Materials and methods. Data on current antimalarial drugs, the genome of Plasmodium malaria, and the mechanisms of drug resistance in P. falciparum were analyzed.
Results. It was shown that antimalarial drugs could block or competitively replace transport proteins, and the key parasite enzymes that catalyzed the major metabolic pathways of plastic and energy exchange. The targets could be metabolites of hemoglobin absorbed by Plasmodium, enzymes involved in the electron transport chain, as well as parasite enzymes, such as cytochrome b, dihydropteroate synthase, dihydrofolate reductase, calcium-dependent ATP synthase, phosphatidylinositol-3-hydrogen kinase, dihydroorotate dehydrogenase, and others. The main mechanisms of drug resistance were associated with the genetic heterogeneity of infectious agents. Of great importance in the formation of resistance are SNP mutations at the loci of the PfCRT, PfMDR1, PfATP6, PfDHPS, PfDHFR, and PfCYTB genes, as well as genetic recombination in Plasmodium during erythrocytic schizogony. The formation of resistant strains and the selection of drug resistance mutations were facilitated by long-term blood parasite persistence while taking antimalarial drugs.
Conclusion. The basic principles of etiotropic treatment for malaria should be early treatment, as well as combination therapy using the most effective antimalarial drugs of different pharmacological groups at dosages ensuring the rapid elimination of pathogens from the patient’s body.

Literature


1. Бронштейн А.М., Малышев Н.А., Лобзин Ю.В. От колониальной и военной медицины к медицине тропической: дорога временных поражений и знаменитых побед. Эпидемиол. и инфекц. бол. 2015; 20(2): 43–8.

Bronshteyn A.M., Malyshev N.A., Lobzin Yu.V. [From colonial and military medicine to tropical medicine: Road of temporary defeats and famous victories]. Epidemiologiya i infekcionnye bolezni 2015; 20(2): 43–8. (In Russ.)


2. Лысенко А.Я., Кондрашин А.В., Ежов М.Н. Маляриология. 2-е изд. Копенгаген: ВОЗ. Европейское региональное бюро, 2003. 510 с.

Lysenko А.Ya., Kondrashin A.V., Ezhov M.N. [Malariology]. 2nd ed. Copenhagen: WHO, Regional Office for Europe, 2003. 510 p. (In Russ.)


3. Сергиев В.П., Баранова А.М., Кожевникова Г.М., Токмалаев А.К., Чернышев Д.В., Ченцов В.Б., Куасси Д. М. Проблемы клинической диагностики и лечения P. falciparum-малярии в Российской Федерации. Тер. архив 2018; 90(11): 4–8. DOI: 10.26442/terarkh201890114-8

Sergiev V.P., Baranova A.M., Kozhevnikova G.M., Tokmalayev A.K., Chernyshev D.V., Chentsov V.B., Kuassi D.M. [Problems of clinical diagnosis and treatment of P. falciparum malaria in Russian Federation]. Terapevticheskiy аrkhive 2018; 90(11): 4–8. (In Russ.). DOI: 10.26442/ terarkh201890114-8


4. WHO. World malaria report 2018. https://www.who.int/malaria/ publications/world-malaria-report-2018/report/en/


5. Баранова А.М., Гузеева Т.М., Морозова Л.Ф. Смертельные исходы от тропической малярии (2009–2012 гг.). Мед. паразитол. и паразитар. бол. 2013; (3): 50–2.

Baranova A.M., Guzeeva T.M., Morozov L.F. [Death cases from tropical malaria in Russia (2009–2012)]. Meditsinskaya parazitologiya i parazitarnyye bolezni 2013; (3): 50–2. (In Russ.).


6. Коваленко А.Н., Мусатов В.Б., Соловьев А.И., Капацына В.А. Сложности терапии P. falciparum-малярии в Российской Федерации. Тер. архив 2019; 91(11): 75–80. DOI: 10.26442/00403660.2019.11.000442

Kovalenko A.N., Musatov V.B., Solovev A.I., Kapatcyna V.A. [Complexity of the therapy of P. falciparum-malaria in the Russian Federation]. Terapevticheskiy аrkhive 2019; 91(11): 75–80. (In Russ.) DOI: 10.26442/00403660.2019.11.000442


7. Усков А.Н., Соловьев А.И., Кравцов В.Ю., Гудков Р.В., Коломоец Е. В., Левковский А.Е. Молекулярно-генетические механизмы вирулентности Plasmodium falciparum и патогенеза тропической малярии. Журнал инфектологии 2018; 10 (3): 23–30. https://doi.org/10. 22625/2072-6732-2018-10-3-23-29

Uskov A.N., Solovev A.I., Kravtsov V.Y., Gudkov R.V., Kolomoyets E.V., Levkovskiy A.E. [Molecular-genetic mechanisms of Plasmodium falciparum virulence and tropical malaria pathogenesis]. Zhurnal infektologii 2018; 10(3): 23–30. (In Russ.) https://doi.org/10.22625/2072-6732-2018-10-3-23-29


8. Fairhurst R.M., Wellems T.E. Malaria (Plasmodium Species). In: Bennett J., Dolin R., Blaser M.J. (eds.). Mandell, Douglas and Bennett’s. Principles and Practice of Infectious Diseases. 8th ed. Philadelphia: Elsevier; 2015: 3070–90.


9. WHO. Guidelines for the treatment of malaria, 2015. https://www.who.int/ malaria/publications/atoz/9789241549127/en/


10. Allman E.L., Painter H.J., Samra J., Carrasquilla M., Llinás M. Metabolomic profiling of the malaria box reveals antimalarial target pathways. Antimicrob. Agents Chemother. 2016; 60(11): 6635–49. DOI: 10.1128/ AAC.01224-16


11. Mundwiler-Pachlatkoa E., Beck H.-P. Maurer’s clefts, the enigma of Plasmodium falciparum. PNAS 2013; 110(50): 19987–94. DOI: 10.1073/ pnas.1309247110.


12. Dahl E.L., Shock J.L., Shenai B.R., Gut J., DeRisi J.L., Rosenthal Ph.J. Tetracyclines specifically target the apicoplast of the malaria parasite Plasmodium falciparum. Antimicrob. Agents Chemother. 2006; 50(9): 3124–31. DOI:10.1128/AAC. 00394-06


13. Lim L., McFadden G. The evolution, metabolism and functions of the apicoplast. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2010; 365(1541): 749–63. DOI: 10.1098/rstb.2009.0273


14. Chou A.C., Chevli R., Fitch C.D. Ferriprotoporphyrin IX fulfills the criteria for identification as the chloroquine receptor of malaria parasites. Biochemistry 1980; 19(8): 1543–49. DOI: 10.1021/bi00549a600


15. Ralph S.A., D’Ombrain M.C., McFadden G.I. The apicoplast as an antimalarial drug target. Drug Resistance Updates 2001; 4(3): 145–51. DOI:10.1054/drup.2001.0205


16. Mudeppa D.G., Pang C.K., Tsuboi T., Endo Y. Cell-free production of functional Plasmodium falciparum dihydrofolate reductase-thymidylate synthase. Mol. Biochem. Parasitol. 2007; 151(2): 216–9. DOI:10.1016/j. molbiopara.2006.10.016.


17. Ke H., Ganesan S.M., Dass S., Morrisey J.M., Pou S., Nilsen A. et al. Mitochondrial type II NADH dehydrogenase of Plasmodium falciparum (PfNDH2) is dispensable in the asexual blood stages. PLoS One 2019; 14(4): e0214023. https://doi.org/10.1371/journal.pone.0214023


18. Gray M.W., Lang B.F., Cedergren R., Golding G.B., Pou S., Nilsen A.. et al. Genome structure and gene content in protist mitochondrial DNAs. Nucleic Acids Res. 1998; 26(4): 865878. DOI: 10.1093/nar/26.4.865


19. Daniyan M.O., Przyborski J.M., Shonhai A. Partners in mischief: functional networks of heat shock proteins of Plasmodium falciparum and their influence on parasite virulence. Biomolecules 2019; 9(7): 1–17. DOI: 10.3390/biom9070295


20. Cooper R.A., Ferdig M.T., Su X., Ursos L.M., Mu J., Nomura T. et al. Alternative mutations at position 76 of the vacuolar transmembrane protein PfCRT are associated with chloroquine resistance and unique stereospecific quinine and quinidine responses in Plasmodium falciparum. Molecular. Pharmacol. 2002; 61(1): 35–42. DOI: 10.1124/mol.61.1.35


21. Fidock D.A., Nomura T., Talley A.K., Cooper R.A., Dzekunov S., Ferdig M. et al. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol. Cell. 2000; 6(4): 861–71. DOI: 10.1016/s1097-2765(05)00077-8


22. Bertaux L., Quang L.H., Sinou V., Thanh N.X., Parzy D. New PfATP6 mutations found in Plasmodium falciparum isolates from Vietnam. Antimicrob. Agents and Chemother. 2009; 53(10): 4570–71. DOI: 10.1128/ AAC.00684-09.


23. Menemedengue V., Sahnouni K., Basco L., Tahar R. Molecular Epidemiology of Malaria in Cameroon. XXX. Sequence Analysis of Plasmodium falciparum ATPase 6, dihydrofolate reductase, and dihydropteroate synthase resistance markers in clinical isolates from children treated with an artesunate-sulfadoxine-pyrimethamine combination. Am. J. Trop. Med. Hyg. 2011; 85(1): 22–5. DOI: 10.4269/ajtmh.2011.10-0523


24. Peterson D.S., Walliker D., Wellems T.E. Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proc. Natl. Acad. Sci. USA 1988; 85(23): 9114–18. DOI: 10.1073/pnas.85.23.9114


25. Wang P., Read M., Sims P.F.G., Hyde J.E. Sulfadoxine resistance in the human malaria parasite Plasmodium falciparum is determined by mutations in dihydropteroate synthetase and an additional factor associated with folate utilization. Molecular. Microbiology 1997; 23(5): 979–86. DOI: https://doi.org/10.1046/j.1365-2958.1997.2821646.x


26. Fisher N., Majid R.A., Antoine T., Helal M.A., Warman A.J., Johnson D., et al. Cytochrome b mutation Y268S conferring atovaquone resistance phenotype in malaria parasite results in reduced parasite bc1 catalytic turnover and protein expression. J. Biol. Chem. 2012; 287(13): 9731–41. DOI: 10.1074/jbc.M111.324319


27. Miotto O., Amato R., Ashley E.A., Macinnis B., Almagro-Garcia J., Ch. Amaratunga et al. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat. Genet. 2015; 47(3): 226–34. DOI:10.1038/ng.3189


28. Njokah M.J., Kang’ethe J.N., Kinyua J., Kariuki D., Kimani F.T. In vitro selection of Plasmodium falciparum PfCRT and PfMDR1 variants by Artemisinin. Malar. J. 2016; 15: 381. https://doi.org/10.1186/s12936-016-1443-y


29. Gardner M.J., Hall N., Fung E., White O. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 2002; 419(6906): 498–511. DOI: 10.1038/nature01097


30. Verdier F., Bras J.L., Clavier F., Hatin I., Blayo M. Chloroquine uptake by Plasmodium falciparum-infected human erythrocytes during in vitro culture and its relationship to chloroquine resistance. Antimicrob. Agents. Chemother. 1985; 27(4): 561–4. doi: 10.1128/AAC.27.4.561


31. Pickard A.L., Wongsrichanalai C., Purfield A., Kamwendo D., Emery К., Zalewski Ch. et al. Resistance to antimalarials in Southeast Asia and genetic polymorphisms in PfMDR1. Antimicrob. Agents. Chemother. 2003; 47(8): 2418–23. DOI: 10.1128/aac.47.8.2418-2423.2003


32. Price R.N., Uhlemann A.C., Brockman A., McGready R., Ashley E., Phaipun L. et al. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet 2004; 364(9432): 438–47. DOI: 10.1016/S0140-6736(04)16767-6


33. Reed M., Saliba K., Caruana S., Kirk K. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 2000; 403(6772): 906–9. DOI: 10.1038/35002615


34. Ferdig M.T., Cooper R.A., Mu J., Deng B., Joy D.A., Su X.-Z. et al. Dissecting the loci of low-level quinine resistance in malaria parasites. Mol. Microbiol. 2004; 52(4): 985–97. DOI: 10.1111/j.1365-2958.2004.04035.x


35. Mu J., Ferdig M.T., Feng X., Joy D.A., Duan J., Furuya T. et al. Multiple transporters associated with malaria parasite responses to chloroquine and quinine. Molecular. Microbiology 2003; 49: 977–89. DOI: 10.1046/j.1365-2958.2003.03627.x


36. Triglia T., Menting J.G., Wilson C., Cowman A.F. Mutations in dihydropteroate synthase are responsible for sulfone and sulfonamide resistance in Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 1997; 94(25): 13944–9. DOI: 10.1073/pnas.94.25.13944


37. Cowman A.F., Morry M.J., Biggs B.A., Cross G.A., Foote S.J. Amino acid changes linked to pyrimethamine resistance in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum. Proc. Natl. Acad. Sci. USA. 1988; 85(23): 9109–13. DOI:10.1073/pnas.85.23.9109


38. Srivastava I.K., Morrisey J.M., Darrouzet E., Daldal F., Vaidya A.B. Resistance mutations reveal the atovaquone binding domain of cytochrome b in malaria parasites. Molecular. Microbiology 1999; 33(4): 704–11. DOI:10.1046/j.1365-2958.1999.01515.x


39. Srivastava I. K., Rottenberg H., Vaidya A.B. Atovaquone, a broad spectrum antiparasitic drug, collapses mitochondrial membrane potential in a malarial parasite. J. Biol. Chem. 1997; 272(7): 3961–66. https://www.jbc.org/ content/272/7/3961.long.


40. Srivastava I.K., Vaidya A.B. A mechanism for the synergistic antimalarial action of atovaquone and proguanil. Antimicrob. Agents. Chemother. 1999; 43(6): 1334–39. DOI: 10.1128/AAC.43.6.1334


41. Schwöbel B., Alifrangis M., Salanti A., Jelinek T. Different mutation patterns of atovaquone resistance to Plasmodium falciparum in vitro and in vivo: rapid detection of codon 268 polymorphisms in the cytochrome b as potential in vivo resistance marker. Malar. J. 2003; 2: 5. https://doi.org/ 10.1186/1475-2875-2-5


42. Fidock D.A., Nomura T., Wellems T.E Cycloguanil and its parent compound proguanil demonstrate distinct activities against Plasmodium falciparum malaria parasites transformed with human dihydrofolate reductase. Molecular. Pharmacology 1998; 54(6): 1140–7. DOI: 10.1124/ mol.54.6.1140.


43. Watkins W.M., Chulay J.D., Sixsmith D.G., Spencer H.C., Howells R.E. A preliminary pharmacokinetic study of the antimalarial drugs, proguanil and chlorproguanil. J. Pharm. Pharmacol. 1987; 39(4): 261–5. DOI: https:// doi.org/10.1111/j.2042-7158.1987.tb06263.x


44. Lisewski A.M., Quiros M., Mittale M., Putlurifgh N., Sreekumar A., Haeggstrom J.Z. et al. Potential role of Plasmodium falciparum exported protein 1 in the chloroquine mode of action. Int. J. Parasitol. Drugs. Drug. Resist. 2018; 8(1): 31–5. DOI: 10.1016/j.ijpddr.2017.12.003.


45. Lisewski A.M., Quiros M., Ng C.L., Adikesavan A.K., Miura K., Putluri N. et al. Supergenomic network compression and the discovery of EXP1 as a glutathione transferase inhibited by artesunate. Cell. 2014; 158(4): 916–28. DOI: 10.1016/j.cell.2014.07.011


46. Miley G.P., Pou S., Winter R., Nilsen A., Li Y., Kelly J.X. et al. ELQ-300 prodrugs for enhanced delivery and single-dose cure of malaria. Antimicrob. Agents. Chemother. 2015; 59(9): 5555–60. DOI: 10.1128/AAC.01183-15


47. Macintyre F., Ramachandruni H., Burrows J.N., Holm R., Thomas A., Möhrle J.J. et al. Injectable anti-malarials revisited: discovery and development of new agents to protect against malaria. Malar. J. 2018; 17: 402. https://doi.org/10.1186/s12936-018-2549-1.


48. Nilsen A., LaCrue A.N., White K.L., Forquer I.P., Cross R.M., Marfurt J. et al. Quinolone-3-diarylethers: a new class of antimalarial drug. Sci. Transl. 2013; 5(177): 1–13. DOI:10.1126/scitranslmed.3005029.


49. Smilkstein M.J., Pou S., Krollenbrock A., Bleyle L.A., Dodean R.A., Frueh L. et al. ELQ-331 as a prototype for extremely durable chemoprotection against malaria. Malar. J. 2019; 18 (1): 291. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6712883


About the Autors


Aleksey I. Solovуev, MD, Professor, Department of Biology (with Course of Medical Genetics), S.M. Kirov Military Medical Academy, Ministry of Defense of the Russian Federation, Saint Petersburg, Russia; email: solopiter@gmail.com; ORCID: https://orcid.org/0000-0002-3731-1756
Aleksandr N. Uskov, MD, Professor, Deputy Director for Research in the Development and Coordination of National and International Projects, Pediatric Research and Clinical Center for Infectious Diseases, Federal Biomedical Agency, Saint Petersburg, Russia, email: aouskov@gmail.com; ORCID: https://orcid. org/0000-0003-3185-516X
Aleksandr N. Kovalenko, MD, Associate Professor, Department of Infectious Diseases (with Course of Medical Parasitology and Tropical Diseases), S.M. Kirov Military Medical Academy, Ministry of Defense of the Russian Federation, Saint Petersburg, Russia, email: 9268754@mail.ru; ORCID: //orcid.org/0000-0002-2976-8051
Vladimir A. Kapatsyna, Head, Department, S.P. Botkin Clinical Infectious Diseases Hospital, Saint Petersburg, Russia, email: ingashi@mail.ru; ORCID: https://orcid.org/0000-0002-2976-8051
Aleksandr I. Rakin, Educator, Department of Biology (with Course of Medical Genetics), S.M. Kirov Military Medical Academy, Ministry of Defense of the Russian Federation, Saint Petersburg, Russia; email: rakinalex@gmail.com; ORCID: https://orcid.org/0000-0001-9085-1287


Similar Articles


Бионика Медиа