Possibilities of biological and mathematical modeling of infection caused by Epstein–Barr virus


DOI: https://dx.doi.org/10.18565/epidem.2020.10.1.93-7

Permyakova A.V., Sazhin A.V., Melekhina E.V., Gorelov A.V.

1) Academician E.A. Vagner Perm State Medical University, Ministry of Health of Russia, Perm, Russia; 2) OOO «LOR Plus» Medical Center, Perm, Russia; 3) Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being, Moscow, Russia
The review presents the existing biological and mathematical models of the infectious disease process caused by Epstein–Barr virus (EBV). The existence of EBV in the host can be presented by a cycle consisting of 6 consecutive stages, each of which has its own independent variant of immune regulation. The phenomenon of virus shedding into the biological fluids, into the saliva in particular, which has been modeled with differential equations, is described. The mathematical modeling makes it possible to supplement the existing knowledge about the pathogenesis of the infectious disease process caused by Epstein–Barr virus, as well as to determine the threshold levels of virus shedding into the nonsterile environments for the diagnosis of active infections.

Literature



  1. Кирьянов Б.Ф., Токмачев М.С. Математические модели в здравоохранении. Учебное пособие. Великий Новгород: НовГУ им. Ярослава Мудрого, 2009. 280 с.

    Kirianov B.F., Tokmachev M.S. [Mathematical models in healthcare]. Velikiy Novgorod: Novgorodskiy gosudarstvennyy universitet imeni Yaroslava Mudrogo, 2009. 280 р. (In Russ.).



  2. Молчанов А.М. Кинетическая модель иммунитета: препринт Ин-та прикл. математики АН СССР. М.: Изд-во АН СССР, 1970. 22 с.

    Molchanov A.M. [Kinetic model of immunity: preprint Institute of Applied Mathematics Academy of Sciences of the USSR]. Moscow: Izdatelstvo AN SSSR, 1970. 22 p. (In Russ.).



  3. Hege J.S., Cole G. A mathematical model relating circulating antibody and antibody forming cell. J. Immunol. 1966; 97: 34–40.

  4. Bell G.I. Prey-predator equations simulating an immune response. Math. Biosci. 1973; 16: 291–314.

  5. Марчук Г.И. Математические модели в иммунологии. Вычислительные методы и эксперименты. М.: Наука, 1991. 304 с.

    Marchuk G.I. [Mathematical models in immunology. Computational methods and experiments]. Moscow: Nauka, 1991. 304 p. (In Russ.).



  6. Романюха А.А., Руднев С.Г., Зуев С.М., Дымников В.П. (ред.). Анализ данных и моделирование инфекционных заболеваний. Современные проблемы вычислительной математики и математического моделирования. М.: Наука, 2005. В 2-х т. Т. 2. Математическое моделирование. М.: Наука, 2005; 352–404.

    Romanyukha A.A., Rudnev S.G., Zuyev S.M., Dymnikov V.P. (eds.). [Data analysis and modeling of infectious diseases. Modern problems of calculus mathematics and mathematical modeling. Vol. 2. Mathematical modeling]. Mosсow: Nauka, 2005; 352–404. (In Russ.).



  7. Thorley-Lawson D.A. EBV Persistence–Introducing the Virus. Curr. Top. Microbiol. Immunol. 2015; 390 (1): 151–209.

  8. Castro M., Lythe G., Molina-Paris C., Ribeiro R.M. Mathematics in modern immunology. Interface Focus. 2016; 6(2): 20150093. DOI: 10.1098/rsfs. 2015.0093

  9. Babcock G.J., Decker L.L., Volk M., Thorley-Lawson D.A. EBV persistence in memory B cells in vivo. Immunity 1998; 9(3): 395–404.

  10. Thorley-Lawson D.A., Gross A. Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N. Engl. J. Med. 2004; 350(13): 1328–37.

  11. Pender M.P., Csurhes P.A., Burrows J.M., Burrows S.R. Defective T-cell control of Epstein–Barr virus infection in multiple sclerosis. Clin. Transl. Immunology 2017; 6(1): е126.

  12. Hochberg D., Souza T., Catalina M., Sullivan J.L., Luzuriaga K., Thorley-Lawson D.A. Acute infection with Epstein–Barr virus targets and overwhelms the peripheral memory B-cell compartment with resting, latently infected cells. J. Virol. 2004; 78(10): 5194–204.

  13. Thorley-Lawson D.A., Hawkins J.B., Tracy S.I., Shapiro M. The Pathogenesis of Epstein–Barr virus Persistent Infection. Curr. Opin.Virol. 2013; 3(3): 227–32.

  14. Гурцевич В.Э. Вирус Эпштейна–Барр и классическая лимфома Ходжкина. Клиническая онкогематология 2016; 9(2): 101–4.

    Gurcevich V.E. [Epstein–Barr virus and classical Hodgkin lymphoma]. Klinicheskaya onkogematologiya 2016; 9(2): 101–4. (In Russ.).



  15. Hawkins J.B., Delgado-Eckert E., Thorley-Lawson D.A., Shapiro M. The cycle of EBV infection explains persistence, the sizes of the infected cell populations and which come under CTL regulation. PLoS Pathog. 2013; 9(10): e1003685.

  16. Hadinoto V., Shapiro M., Sun C.C., Thorley-Lawson D.A. The Dynamics of EBV Shedding Implicate a Central Role for Epithelial Cells in Amplifying Viral Output. PLoS Pathog . 2009; 5(7): e1000496.

  17. Симованьян Э.Н., Денисенко В.Б., Григорян А.В., Ким М.А., Бовтало Л.Ф., Белугина Л.В. Эпштейна–Барр вирусная инфекция у детей: совершенствование программы диагностики и лечения. Детские инфекции 2016; 15(1): 15–24.

    Simovanian E.N., Denisenko V.B., Grigoryan A.V., Kim M.A., Bovtalo L.F., Belugina L.V. [Epstein–Barr Virus Infection in Children: Improving the Diagnosis and Treatment Program]. Detskie infekcii 2016; 15(1): (1): 15–24. (In Russ.).



  18. Delgado-Eckert E., Shapiro М. A model of host response to a multi-stage pathogen. J. Math. Biol. 2011; 63(2): 201–27.

  19. Hoshino Y., Katano H., Zou P. et al. Long-term administration of valacyclovir reduces the number of Epstein–Barr virus (EBV)-infected B cells but not the number of EBV DNA copies per B cell in healthy volunteers. J. Virol. 2009; 83(22): 11857–61.

  20. Pegtel D., Middeldorp J., Thorley-Lawson D.А. Epstein–Barr virus infection in ex vivo tonsil epithelial cell cultures of asymptomatic carriers. Virol. 2004; 78(22): 12613–24.

  21. Tugizov S.M., Herrera R., Palefsky J.M. Epstein–Barr virus transcytosis through polarized oral epithelial cells. J. Virol. 2013; 87(14): 8179–94.

  22. Горейко Т.В., Калинина Н.М., Дрыгина Л.Б. Современные представления об иммунопатогенезе инфекции, вызванной вирусом Эпштейна–Барр. Инфекция и иммунитет 2011; 1(2): 121–30.

    Goreyko T.V., Kalinina N.M., Drygina L.B. [The modern conceptions about immunopathogenesis of infection caused by the Epstein–Barr virus]. Infekciya i immunitet 2011; 1(2): 121–30. (In Russ.).



  23. Huynh G.T., Rong L. Modeling the dynamics of virus shedding into the saliva of Epstein–Barr virus positive individuals. J. Theor. Biol. 2012; 310: 105–14.

  24. Пермякова А.В., Поспелова Н.С., Львова И.И. Оптимизация диагностики цитомегаловирусной инфекции у детей младшего возраста. Детские инфекции 2018; 17(3): 51–6.

    Permyakova A.V., Pospelova N.S., L’vova I.I. [On the possibilities of laboratory verification of cytomegalovirus infection in children]. Detskie infekcii 2018; 17(3): 51–6. (In Russ.).



  25. Горелов А.В., Музыка А.Д., Мелехина Е.В., Петухова Е.В., Шипулина О.Ю., Домонова Э.А., Лысенкова М.Ю., Чугунова О.Л., Акопян А.С., Барыкин В.И. Инфекция вируса герпеса человека 6-го типа у детей, госпитализированных с клиническими проявлениями острого респираторного заболевания. Эпидемиол. инфекц. болезни. Актуал. вопр. 2017; (6): 16–24.

    Gorelov A.V., Muzyka A.D., Melehina E.V., Petuhova E.V., Shipulina O.Yu., Domonova E.A., Lysenkova M.Yu., Chugunova O.L., Akopyan A.S., Barykin V.I. [Human herpesvirus 6 infection in children hospitalized with the clinical manifestations of acute respiratory disease]. Èpidemiologiâ i infekcionnye bolezni. Аktual’nye voprosy 2017; (6): 16–24. (In Russ.).



  26. Thom J.T., Weber T.C., Walton S.M., Torti N., Oxenius A. The Salivary Gland Acts as a Sink for Tissue-Resident Memory CD8(+) T Cells, Facilitating Protection from Local Cytomegalovirus Infection. Cell Rep. 2015; 13: 1125–36. DOI: 10.1016/j.celrep.2015.09.082.

  27. Eliassen E., Di Luca D., Rizzo R., Barao I. The Interplay between Natural Killer Cells and Human Herpesvirus-6. Viruses 2017; 9(12): 367–72.


About the Autors


Anna V. Permyakova, Cand. Med. Sci., Associate Professor, Department of Pediatric Infectious Diseases, Academician E.A.Vagner Perm State Medical University, Ministry of Health of Russia, Perm, Russia; e-mail: derucheva@mail.ru; ORCID: http://orcid.org/0000-0001-5189-0347.
Aleksandr V. Sazhin, Otorhinolaryngologist, Director, OOO «LOR Plus» Medical Center, Perm, Russia; e-mail: info@lor-plus.ru; ORCID: http://orcid.org/0000-0001-9069-7304.
Еlena V. Melekhina, Cand. Med. Sci., Associate Professor of Pediatrics, Senior Researcher, Clinical Department of Infectious Diseases, Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being, Moscow, Russia; e-mail: e.melekhina@mail.ru; ORCID: http://orcid.org/ 0000-0002-9238-9302
Prof. Aleksandr V. Gorelov, MD, Corresponding Member of the Russian Academy of Sciences; Deputy Director for Research, Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being, Moscow, Russia; e-mail: agorelov_05@mail.ru; ORCID: http://orcid.org/0000-0001-9257-0171


Similar Articles


Бионика Медиа