Activity of a salivary antimicrobial peptide fraction in respiratory infectious inflammatory diseases


Arzumanian V.G., Foshina E.P., Vartanova N.O., Malchevskaya M.A., Erofeeva T.V.

I.I. Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
Objective. To investigate the activity of a salivary antimicrobial peptide (AMP) fraction in relation to the microflora and the severity of respiratory inflammatory infectious diseases (RIIDs).
Subjects and methods. A total of 203 patients with varying severity of RIIDs and 29 healthy volunteers were examined. Smears from the posterior pharyngeal wall and tonsils were used to obtain isolates that were identified by classical physiological and biochemical tests. The activity of the fraction of salivary AMPs was assessed by a method based on their property to disrupt the cytoplasmic membrane.
Results. The activity of a salivary AMP fraction in healthy children was 2.5-fold lower than that in patients with RIIDs and healthy adults. The highest AMP activity occurred in mild RIID and significantly differed from that in healthy volunteers and patients with severe RIID. The number of microbial species detected in the oropharynx correlated with the severity of RIID (r = 0.894) and the activity of AMP (r = 0.809).
Conclusion. Due to its high frequency among healthy people (> 70%) and its high inverse correlation with the severity of RIID (r = -0.985), Enterococcus spp. can be attributed to the resident microbiota of the oropharynx, whereas S. pyogenes was not detected in healthy people at all. S. aureus was 1.5 times more commonly found in children than in adults, with no correlation with the severity of RIID.

Literature


  1. Khurshid Z., Naseem M., Sheikh Z., Najeeb S. , Shahab S., Zafar M.S. Oral antimicrobial peptides: Types and role in the oral cavity. Saudi Pharm. J. 2016; 24(5): 515–24.
  2. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002; 415(6870): 389–95.
  3. Arzumanyan V.G., Vartashova N.O., Malchevskaya M.A., Erofeeva T.V., Foshina E.P., Magarshak O.O., Ozhovan I.M., Poddubikov A.V. [Oropharyngeal microbiota in respiratory infectious inflammatory diseases]. Èpidemiologiâ i infekcionnye bolezni. Аktual’nye voprosy 2017; (2): 22–8. (In Russ.).
  4. Amerongen A., Veerman E. Saliva – the defender of the oral cavity. Oral Dis. 2002; 8(1): 12–22.
  5. Brogden K.A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005; 3(3): 238–50.
  6. Harris F., Dennison S.R., Phoenix D.A. Anionic antimicrobial peptides from eukaryotic organisms. Curr. Protein Pept. Sci. 2009; 10(6): 585–606.
  7. Berlutti F., Pilloni A., Pietropaoli M., Polimeni A., Valenti P. Lacroferrin and oral diseases: current status and perspective in periodontitis. Annali di Stomatologia 2011; II(3–4): 10–8.
  8. Sweet S. P., Denbury A. N., Challacombe S. J. Salivary calprotectin levels are raised in patients with oral candidiasis or Sjögren’s syndrome but decreased by HIV infection. Oral Microbiol. Immunol. 2001; 16: 119–23.
  9. Human Lipocalin-2/NGAL Immunoassay Quantikine ELISA. Catalog Number DLCN20. For the quantitative determination of human Lipocalin-2 concentrations in cell culture supernates, serum, plasma, saliva, and urine. https://www.rndsystems.com/products/human-lipocalin-2-ngal-quantikine-elisa-kit_dlcn20
  10. Davidopoulou S., Theodoridis H., Nazer K., Kessopoulou E. Menexes G., Kalfas S. Salivary concentration of the antimicrobial peptide LL-37 in patients with oral lichen planus. J. Oral Microbiol. 2014; (6): 26156. DOI:10.3390/biom7040080
  11. Jenzano J.W., Hogan S.L., Lundblad R. L. Factors influencing measurement of human salivary lysozyme in lysoplate and turbidimetric assays. J. Clin. Microbiol. 1986;24(6): 963–7.
  12. Wahl S.M., McNeely T.B., Janoff E.N., Shugars D., Worley P., Tucker C., Orenstein J.M. Secretory leukocyte protease inhibitor (SLPI) in mucosal fluids inhibits HIV-I. Oral Dis. 1997; 3(l): 64–9.
  13. Giusti L., Sernissi F., Donadio E., Ciregia F., Giacomelli C., Giannaccini G., Mazzoni M.R., Lucacchini A, Bazzichi L. Salivary psoriasin (S100A7) correlates with diffusion capacity of carbon monoxide in a large cohort of systemic sclerosis patients. J. Translational Medicine 2016; 14: 262–7.
  14. Arnold J., Sangwaiya A., Manglam V., Geoghegan F., Thursz M., Busbridge M. Presence of hepcidin-25 in biological fluids: bile, ascitic and pleural fluids. World J. Gastroenterol. 2010; 16(17): 2129–33.
  15. Kapas S., Pahal K., Cruchley A.T., Hagi-Pavli E., Hinson J.P. Expression of adrenomedullin and its receptors in human salivary tissues. J. Dent. Res. 2004; 83(4): 333–7.
  16. Küçükkolbaşı H., Küçükkolbaşı S., Dursun R., Ayyıldız F., Kara H. Determination of defensing HNP-1 in human saliva of patients with oral mucosal diseases. J. Immunoassay and Immunochemistry 2011; 32(4): 284–95.
  17. Khurshid Z., Najeeb S., Mali M., Faraz S.M., Raza S.Q., Zohaib S., Sefat F., Sohail M. Z. Histatin peptides: Pharmacological functions and its applications in dentistry. Saudi Pharmaceutical Journal 2017; 25(1): 25–31.
  18. Psaltis A.J., Bruhn M.A., Ooi E.H., Tan L.W., Wormald P.J. Nasal mucosa expression of lactoferrin in patients with chronic rhinosinusitis. See comment in PubMed Commons belowLaryngoscope 2007; 117(11): 2030–5.
  19. Tieu D.D., Peters A.T., Carter R.G., Suh L., Conley D.B., Chandra R., Norton J., Grammer L.C., Harris K.E., Kato A., Kern R.C., Schleimer R.P. Evidence for diminished levels of epithelial psoriasin and calprotectin in chronic rhinosinusitis. J. Allergy Clin. Immunol. 2010; 125(3): 667–75.
  20. Bogefors J., Kvarnhammar A.M., Millrud C.R., Georén S.K., Cardell L.O. LEAP-2, LL-37 and RNase7 in tonsillar tissue: downregulated expression in seasonal allergic rhinitis. Pathog. Dis. 2014; 72(1): 55–60.
  21. Saakian Y.V., Elizarova V.M., Vinogradova T.V., Pampura A.N. [The value of antimicrobial peptides in the development of diseases of the oral cavity in children with bronchial asthma]. Rossiiskii stomatologicheskii zhurnal 2015; 19(1): 52–6. (In Russ.).
  22. Wang Y., Jia M., Yan X., Cao L., Barnes P.J., Adcock I.M., Huang M., Yao X. Increased neutrophil gelatinase-associated lipocalin (NGAL) promotes airway remodelling in chronic obstructive pulmonary disease. Clin. Sci. (London) 2017; 131(11): 1147–59.
  23. Bachorzewska-Gajewska H., Tomaszuk-Kazberuk A., Jarocka I., Mlodawska E., Lopatowska P., Zalewska-Ada-miec M. Does neutrophil gelatinase-asociated lipocalin have prognostic value in patients with stable angina undergoing elective PCI? A 3-year follow-up study. Kidney Blood Press. Res. 2013; 37(4–5): 280–5.
  24. Jiao D., Wong C., Sin-Man Tsang M. , Miu-Ting Chu I., Liu D. Activation of Eosinophils Interacting with Bronchial Epithelial Cells by Antimicrobial Peptide LL-37: Implications in Allergic Asthma. Scientific Reports 2017; (1): 1848–60.
  25. Ball S.L., Siou G.P., Wilson J.A., Howard A., Hirst B.H., Hall J. Expression and immunolocalisation of antimicrobial peptides within human palatine tonsils. J. Laryngol.Otol. 2007; 121(10): 973–8.
  26. Fryksmark U., Jannert M., Ohlsson K., Tegner H., Wihl J.A. Secretory leukocyte protease inhibitor in normal, allergic and virus induced nasal secretions. Rhinology 1989; 27(2):97–103.
  27. Raundhal M., Morse C., Khare A., Oriss T.B., Milosevic J., Trudeau J., Huff R., Pilewski J., Holguin F., Kolls J., Wenzel S., Ray P., Ray A. High IFN-γ and low SLPI mark severe asthma in mice and humans. J. Clin. Invest. 2015; 125(8): 3037–50.
  28. Niu R.C., Luo B.L., Feng J.T., Wang L.J., Hu C.P. Expression of secretory leukocyte proteinase inhibitor in the bronchi and lung tissues of chronic obstructive pulmonary disease rat models and the regulatory mechanism by transforming growth factor beta(1). Zhonghua Jie He He Hu Xi Za Zhi 2007; 30(11): 851–6.
  29. Fujikura T., Okubo K. Adrenomedullin level in the nasal discharge from allergic rhinitis cohort. Peptides 2011; 32(2): 368–73.
  30. Kucukosmanoglu E., Keskin O., Karcin M., Cekmen M., Balat A. Plasma adrenomedullin levels in children with asthma: any relation with atopic dermatitis? Allergol. Immunopathol. (Madr.). 2012; 40(4): 215–9.
  31. Ishikawa T., Hatakeyama K., Imamura T., Ito K., Hara S., Date H., Shibata Y., Hikichi Y., Asada Y., Eto T. Increased adrenomedullin immunoreactivity and mRNA expression in coronary plaques obtained from patients with unstable angina. Heart 2004; 90(10): 1206–10.
  32. The central role of adrenomedullin in host defense. https://www.researchgate.net/publication/7013367_The_central_role_of_ adrenomedullin_in_host_defense.
  33. Baines K.J., Wright T.K., Simpson J.L., McDonald V.M., Wood L.G., Parsons K.S. Airway β-Defensin-1 Protein Is Elevated in COPD and Severe Asthma. Mediators Inflamm. 2015; 9859: 1–8. DOI:10.1155/2015/407271.
  34. Valore E.V., Wiley D.J., Ganz T. Reversible deficiency of antimicrobial polypeptides in bacterial vaginosis. Infect. Immun. 2006; 74(10): 5693–702.
  35. Arzumanian V., Malbakhova E., Vartanova N. The new about congenital antimicrobial defense of some epithelial tissues – vaginal mucosa and hair. In: A search for antibacterial agents, 2012. ISBN: 978-953-51-0724-8. Chapter 8: 125–46.
  36. Arzumanian V.G., Malbakhova E., Foshina E.P., Vartanova N.O., Artemʹeva T.A., Butovchenko L.M., Vartanova N.O., Shmeleva O.A. [Method of estimation of overall antimicrobial peptides activity as marker of status of different epithelial tissues]. Patent RF № 2602298, 2015. (In Russ.).
  37. Kavishwar A., Shukla P. K. Candidacidal activity of a monoclonal antibody that binds with glycosyl moieties of proteins of Candida albicans. Medical Mycology 2006; 44(2): 159–67.
  38. Macpherson A.J., McCoy K.D., Johansen F.-E., Brandtzaeg P. The immune geography of IgA induction and function. Immunology 2008; (1): 11–22.
  39. Malyshev M.Ye., Lobeyko V.V., Iordanishvili A.K. [Immune parameters of saliva in persons of different age residing in St. Petersburg and Leningrad Region]. Uspekhi gerontologii 2015; (2): 99–103. (In Russ.).


About the Autors


For correspondence:
Prof. Vera G. Arzumanian, BD, Head, Laboratory of Physiology of Fungi and Bacteria, I.I. Mechnikov Research Institute for Vaccines and Sera
Address: 5a, Maly Kazenny Lane, Moscow 105064, Russia
Telephone: +7(495) 917-09-03
E-mail: veraar@mail.ru
Information about the authors:
Elena P. Foshina, Cand. Med. Sci., Head, Laboratory of Immunological Research Methods, I.I. Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia;
e-mail: kit6@yandex.ru
Nune O. Vartanova, Cand. Biol. Sci., Senior Researcher, Laboratory of Opportunistic Bacteria, I.I. Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia; e-mail: nune4me@mail.ru
Mariya A. Malchevskaya, Diploma Student, Laboratory of Physiology of Fungi and Bacteria, I.I. Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia;
e-mail: mmalchevskaya@gmail.com
Taisiya V. Erofeeva, Junior Researcher, Laboratory of Physiology of Fungi and Bacteria, I.I. Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia; e-mail: taisiyap@yandex.ru


Similar Articles


Бионика Медиа