Comparative analysis of specific and non-specific markers in patients with different stages of liver fibrosis in chronic hepatitis C


DOI: https://dx.doi.org/10.18565/epidem.2022.12.4.61-7

Nikolaeva L.I., Shevchenko N.G., Dedova A.V., Sapronov G.V., Samokhvalov E.I., Vakhromeev A.A.

1) Honorary Academician N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of Russia, Moscow, Russia; 2) Russian Medical Academy of Continuing Professional Education, Ministry of Health, Moscow, Russia
Objective. To study a possible relationship between individual stages of liver fibrosis (LF) in patients with chronic hepatitis C (CHC) and their virological, serological, and immunogenetic parameters.
Subjects and methods. Five groups of 150 patients were formed by the stage of LF. The latter was determined employing transient fibroelastometry. Hepatitis C virus (HCV) RNA was detected and quantified by reverse transcription PCR using 2 versions of the RealBest HCV RNA kit. Antibodies to HCV were detected in the RecombiBest anti-HCV IgM and RecombiBest anti-HCV spectrum test systems. Polymorphic loci of the IFNL3 (rs8099917 T/G) and IFNL4 (rs1297960 C/T) genes were genotyped using the IL28B Immunogenetics kit.
Results. Comparison of the virological parameters did not reveal a significant relationship to a certain stage of LF. Among specific antibodies, only anti-HCV IgM showed an association with the fibrosis stages F2–F4 (p < 0.001). The detection rate for these antibodies significantly increased from F0 (46.7%) to F4 (93.3%). The ratio of genotype variants for polymorphic loci of the IFNL3 and IFNL4 genes changed with increasing LF stages. In the liver cirrhosis group, the CT–TG genotype was dominant, the differences in participants with F0 were significant (p = 0.0009).
Conclusion. The prognostic markers of impending liver cirrhosis include anti-HCV IgM in high titers and the CT-TG genotype in the polymorphic loci of the IFNL4 (rs1297960 C/T) and IFNL3 (rs8099917 T/G) genes.

Literature


1. Daw M.A., El-Bouzedi A.A., Ahmed M.O., Dau A.A., Agnan M.M., Drah A.M. Geographic integration of hepatitis C virus: A global threat. World J. Virol. 2016; 5(4): 170–82. https://doi.org/ 10.5501/wjv.v5.i4.170


2. Petruzziello A., Marigliano S., Loquercio G., Cozzolono A., Cacciapuoti C. Global epidemiology of hepatitis C virus infection: An up-date of the distribution and circulation of hepatitis C virus genotypes. World J. Gastroenterol. 2016; 22(34): 7824–40. https://doi.org/10.3748/ wjg.v22.i34.7824


3. Чуланов В.П., Пименов Н.Н., Мамонов Н.А., Сагалова О.И., Шестакова И.В., Покровский В.И. Хронический гепатит С как проблема здравоохранения России сегодня и завтра. Терапевтический архив 2015; (11): 5–10.


Chulanov V.P., Pimenov N.N., Mamonov N.A., Sagalova O.I., Shestakova I.V., Pokrovsky V.I. [Chronic Hepatitis C in Russia: current challenges and prospects]. Terapevticheskii Arkhiv 2015; (11): 5–10. (In Russ.).


4. О состоянии санитарно-эпидемиологического благополучия населения в Российской Федерации в 2014 году: Государственный доклад. М., 2015. http://rospotrebnadzor.ru/upload/iblock/22c/gd_2014_seb_dlya-sayta.pdf.


[On the state of sanitary and epidemiological well-being of the population in the Russian Federation in 2014: State report]. Moscow, 2015. (In Russ.). http://rospotrebnadzor.ru/upload/iblock/22c/ gd_2014_seb_dlya-sayta.pdf


5. Инфекционная заболеваемость в Российской Федерации за январь–декабрь 2021 г. http://www.rospotrebnadzor.ru


[Infectious incidence in the Russian Federation for January–December 2021]. (In Russ.). http://www.rospotrebnadzor.ru


6. Falada-Nwulia O., Suares-Cuervo C., Nelson D.R., Fried M.W., Segal J.B., Sulkowski M.S. Oral direct-acting agent therapy for hepatitis C virus infection: a systematic review. Ann Intern Med. 2017; 166: 637–48. https://doi.org/10.7326/M16-2575


7. Rosecrans A.M., Cheedalla A., Rives S.T., Scotti L.A., Harris R.E., Greenbaum A.H. et al. Public health clinic-based hepatitis C treatment. Am. J. Prev. Med. 2020; 59: 420–7. https://doi.org/10.1016/j.amepre. 2020.03.006


8. World Health Organization. Global hepatitis report. Geneva, Swizerland: WHO, 2017. https://www.who.int/hepatitis/publications/ global-hepatitis-report2017/en/


9. Bartenschlager R., Baumert T.F., Bukh J., Lemon M., Lindenbach S., Lohmann B. et al. Critical сhallenges and emerging opportunities in hepatitis C research in an era of potent antiviral therapy: considerations for scientists and funding agencies. Virus Res. 2018; 248: 53–62. https://doi.org/10.1016/j.virusres.2018.02.016


10. Roche B., Coilly A., Duclos-Vallec J.C., Sammuel D. The impact of treatment of hepatitis C with DAAs on occurrence of HCC. Liver Int. 2018; 38(Suppl.1): 139–45. https://doi.org/ 10.1111/liv.13659


11. Guarino M., Sessa A., Cossiga V., Special interest group on «Hepatocellular carcinoma and new anti-HCV therapies» of the Italian Association for the Study of the Liver. Direct-acting antivirals and hepatocellular carcinoma in chronic hepatitis C: a few lights and many shadows. World J. Gastroenterol. 2018; 24: 2582–95. https://doi.org/ 10.3748/wjg.v24.2582


12. Patel K., Friedrich-Rust M., Lurie Y., Grigorescu M., Stanclu C., Lee C.M. et al. FibroSURE and FibroScan in treatment response in chronic hepatitis C virus. World J. Gastroenterol. 2011; 17(41): 4581–9. https://doi.org/10.3748/wjg.v17.i41.4581


13. Bedossa P., Carrat F. Liver biopsy: the best, not the gold standard. J. Hepatol. 2009; 50(1): 1–3. https://doi.org/ 10.1016/jhep.2008.10.014


14. Thomas D.L., Thio C.L., Martin M.P., Qi Y., Ge D., O’Huigin C. et al. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 2009; 461(7265): 798–801. https://doi.org/10.1038/nature08463


15. Rauch A., Kutalik Z., Descombes P., Cai T., Di Iulio J., Mueller T. et al. Genetic variation in IL28B is associated with chronic hepatitis C and treatment failure: A Genome-Wide Association Study. Gastroenterology 2010; 38(4): 1338–45. https://doi.org/10.1053/j.gastro.2009.12/056


16. Muir A.J. IL28B in the era of direct-acting antivirals for hepatitis C. J. Clin. Gastroenterol. 2013; 47(3): 222–7. https://doi.org/10.1097/ MCG.0b013e3182680221


17. Eslam M., Hashem A.M., Leung R., Romero-Gomez M., Berg T., Dore G.J. et al. Interferon-lambda rs12979860 genotype and liver fibrosis in viral and non-viral chronic liver disease. Nat. Commun. 2015; (6): 6422. DOI:10.1038/ncomms7422


18. Al-Qahtani A., Al-Anazi M., Abdo A.A., Sanai F.M., Al-Hamoudi W., Alswat K.A. et al. Correlation between genetic variations and serum level of interleukin 28B with genotypes and disease progression in chronic hepatitis C virus infection. J. Immunol. Res. 2015; (1): 768470. https://doi.org/10.1155/2015/768470


19. Ohno T., Mizokami M., Wu N., Saleh M.G., Ohba K.-I., Orito E. et al. New hepatitis C virus (HCV) genotyping system that allows for identification of HCV genotypes 1a, 1b, 2a, 3a, 3b,4, 5a, and 6a. J. Clin. Microbiol. 1997; 35(1): 201–7. https://doi.org/10.1128/jcm.35.1.201-207


20. Sanger F., Niclein S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 1977; 74: 5463–7. https://doi.org/10.1073/pnas.74.12.5463


21. Nikolaeva L.I., Blokhina N.P., Tsurikova N.N., Voronkova N.V., Miminoshvili M.I., Braginsky D.M. et al. Virus-specific antibody titres in different phases of hepatitis C virus infection. J. Viral. Hepatol. 2002; (9): 429–37. https://doi.org/10.1046/j.1365-2893.2002.00369.x


22. Bortolotii F., Verucchi G., Camma C., Cabibbo G., Zancan L., Indolfi G. et al. Long-term course of chronic hepatitis C in children: from viral clearance to end-stage liver disease. Gastroenterology 2008; 134(7): 1900–7. https://doi.org/10.1053/j.gastro.2008.02.082


23. Roffi L., Redaelli A., Colloredo G., Minola E., Donada C., Picciotto A. Outcome of liver disease in a large cohort of histologically proven chronic hepatitis c: influence of HCV genotype. Eur. J. Gastroenterol. Hepatol. 2001; 13(5): 501–6.


24. Bochud P.-Y., Cat T., Overbeck K., Bochud M., Dufour J.F., Müllhaupt B. et al. Genotype 3 is associated with accelerated fibrosis progression in chronic hepatitis C. J. Hepatol. 2009; 51(4): 655–66. https://doi.org/10.1016/j.hep.2009.05.016


25. Wu N., Rao H.-Y., Yang W.-B., Gao Z.-L., Yang R.-F., Fei R. et al. Impact of hepatitis C virus genotype 3 on liver diease progression in a Chinese national cohort. Chin. Med. J. (Engl.). 2020; 133(3): 253–61. https://doi.org/10.1097/CM9. 0000000000000629


26. Самохвалов Е.И., Николаева Л.И., Альховский С.В., Хлопова И.Н., Макашова В.В., Петрова Е.В. и др. Частота встречаемости отдельных субтипов вируса гепатита С в Московском регионе. Вопр. вирусол. 2013; 58(1): 36–40.


Samokhvalov E.I., Nikolaeva L.I., Alkhovskiy S.V., Khlopova I.N., Makashova V.V., Petrova E.V. et al. [Frequency of detection of different hepatitis C virus subtypes in the Moscow Region]. Problems of Virology 2013; 58(1): 36–40. (In Russ.).


27. Mukomolov S., Trifonova G., Levakova I., Bolsun D., Krivanogova E. Hepatitis C in the Russian Federation: challenges and future directions. Hepat. Med. 2016; (8): 51–60. https://doi.org/10.2147/HMER.S50172


28. Жданов К.В., Гусев Д.А., Козлов К.В., Сукачев В.С., Шекуров А.В., Жабров С.С. и др. Взаимосвязь полиморфизмов гена ИЛ-28В, клинико-лабораторных и вирусологических показателей при хронической HCV-инфекции. Журн. инфектол. 2014; 6(4): 19–26.


Zhdanov K.V., Gusev D.A., Kozlov K.V., Sukachyov S.V., Shekurov A.V., Zhabrov S.S. et al. [Relationship between gene polymorphism of IL-28B and clinical laboratory and virologic parameters in patients with chronic HCV infection]. J. Infectologii. 2014; 6(4): 19–26. (In Russ.).


29. Tamaki N., Kurosaki M., Higuchi M., Takada H., Nakakuki N., Yasui Y. et al. Genetic polymorphisms of IL28B and PNPLA3 are predictive for HCV related rapid fibrosis progression and identify patients who require urgent antiviral treatment with new regimens. PLOS Оne 2015; 10(9): e0137351. https://doi.org/10.1371/journal.pone.0137351


30. Zai M., Long J., Liu S., Liu C., Li L., Yang L., Li Y., Shu B. The burden of liver cirrhosis and underlying etiologies: results from the global burden of disease study 2017. Aging (Albany NY) 2021; 13(1): 279–300. https://doi.org/10.18632/aging.104127


About the Autors


Lyudmila I. Nikolaeva, BD, leading researcher of laboratory of gene engineering products of N.F. Gamaleya National Research Center of Epidemiology and Microbiology; l.i.nikolaeva@mail.ru; http://orcid.org/0000-0002-1323-5568.
Nadezhda G. Shevchenko, junior researcher of laboratory of gene engineering products of N.F. Gamaleya National Research Center of Epidemiology and Microbiology; graduate student of Russian Medical Academy of Continuing Professional Education, Ministry of Health, Moscow, Russian Federation; dr.nadya@inbox.ru; http://orcid.org/0000-0002-2486-4554;
Anna V. Dedova, research assistant of laboratory of gene engineering products of N.F. Gamaleya National Research Center of Epidemiology and Microbiology; dedova.anna2010@mail.ru; http://orcid.org/0000-0002-2491-9324
Georgiy V. Sapronov, PhD in medicine, senior researcher of laboratory of gene engineering products of N.F. Gamaleya National Research Center of Epidemiology and Microbiology; associate professor of department of infectious diseases of Russian Medical Academy of Continuing Professional Education; g_sapronov@mail.ru; http://orcid.org/0000-0002-2154-2904
Samokhvalov I. Evgeniy, PhD in biology, leading researcher of laboratory of viral ecology of N.F. Gamaleya National Research Center of Epidemiology and Microbiology; e-samokh@hotmail.com; http://orcid.org/0000-0002-1941-0996
Artemiy A. Vakhrоmeev, junior researcher of laboratory of gene engineering products of N.F. Gamaleya National Research Center of Epidemiology and Microbiology; bioartemiyvakhrameev@gmail.com; https://orcid.org/0000-0002-8070-5208


Similar Articles


Бионика Медиа