Epidemiological manifestations of the outbreak of meningococcal infection caused by Neisseria meningitidis serogroup A in Novosibirsk in 2019


DOI: https://dx.doi.org/10.18565/epidem.2021.11.2.13-21

Koroleva M.A., Gritsay M.I., Mironov K.O., Yarygina E.A., Valdokhina A.V., Yanushevich Yu.V., Mikhailova Yu.V., Speranskaya A.S., Melnikova А.А., Koroleva I.S.

1) Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being, Moscow, Russia; 2) Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being, Moscow, Russia
Objective. To analyze the epidemiological manifestations of the outbreak of meningococcal infection (MI) in Novosibirsk, its alleged causes, and infection prevention measures.
Materials and methods. Fifty-four schedules for epidemiological examination of the focus of the infectious disease were studied. Samples taken from 20 patients were sent to the Russian Reference Center for Bacterial Meningitis (RCBM) to test their biological material. An AmpliSens® NSH-FL kit was used to confirm MI. Serogrouping of N. meningitidis was done using an AmpliSens® NmABCW-FL kit. Bacterial DNA of 6 strains was sequenced by the Sanger method applying reagents and equipment from the Applied Biosystems. Sequencing of 10 strains was performed using the HiSeq1500 platform (Illumina, USA).
Results. The total number of cases within 4 months was 62 people; most of them were labor migrants from Tajikistan. N. meningitidis serogroup A prevailed (91%). The outbreak was caused by a group of strains with the ST-75 sequence type and the antigenic profile A: P1. 5-2, 10: F3-5, which had been previously detected in the Russian Federation. They caused sporadic diseases and were not the cause of outbreaks and epidemics. The immediate environment of the patients had risk factors for MI: overcrowding in the places of residence; the environment (relatives/neighbors in the same apartment) with acute respiratory viral infection (ARVI) and nasopharyngitis; congestion of population and intensified communication during religious fasting and holiday; a family history, including a patient with the general form of MI (GFMI), as well as a contact with a patient with GFMI outside the family. Routine preventive immunization in the risk group (more than 40,000 people were vaccinated) could stop the outbreak.
Conclusion. By taking into account the continuing increase in the incidence of MI in the country and the presence of risk factors for the outbreak of MI, the threat of a new epidemic rise in its incidence in the Russian Federation is not ruled out.

Literature


1. Greenwood B. Meningococcal meningitis in Africa. Trans R. Soc. Trop. Med. Hyg. 1999; 93: 341–53. https://doi.org/10.1016/S0035-9203(99)90106-2


2. Greenwood B. Editorial: 100 Years of epidemic meningitis in West Africa – Has anything changed? Trop. Med. Int. Heal. 2006; (11): 773–80. https://doi.org/10.1111/j.1365-3156.2006.01639.x


3. Trotter C.L., Lingani C., Fernandez K., Cooper L.V., Bita A., Tevi-Benissan C. et al. Impact of MenAfriVac in nine countries of the African meningitis belt, 2010–15: an analysis of surveillance data. Lancet Infect. Dis. 2017; 17: 867–72. https://doi.org/10.1016/S1473-3099(17)30301-8


4. Borrow R., Alarcón P., Carlos J., Caugant D.A., Christensen H., Debbag R. et al. Expert Review of Vaccines The Global Meningococcal Initiative: global epidemiology, the impact of vaccines on meningococcal disease and the importance of herd protection Sáfadion behalf of the Global Meningococcal Initiative The Global Meningococcal Initiative: global epidemiology, the impact of vaccines on meningococcal disease and the importance of herd protection on behalf of the Global Meningococcal Initiative. Taylor Fr 2016; 16 313–28. https://doi.org/10.1080/14760584.2017.1258308


5. Harrison L.H., Trotter C.L., Ramsay M.E. Global epidemiology of meningococcal disease. Vaccine 2009; 27: B51–63. https://doi.org/10. 1016/j.vaccine.2009. 04.063


6. Sridhar S., Greenwood B., Head C., Plotkin S.A., Sáfadi M.A., Saha S. et al. Global incidence of serogroup B invasive meningococcal disease: a systematic review. Lancet Infect. Dis. 2015; 15: 1334–46. https://doi.org/10.1016/S1473-3099(15)00217-0


7. World Health Organization. Defeating Meningitis by 2030: A global roadmap (Draft 15 October 2019) 2019: 0–35.


8. Костюкова Н.Н., Бехало В.А., Чернышова Т.Ф. Менингококковая инфекция в России: прошлое и ближайшие перспективы. Эпидемиол. инфекц. болезни. Актуал. вопр. 2014; (2): 73–9.

Kostyukova N.N., Bekhalo V.A., Chernyshova T.F. [Meningococcal infection in Russia: past and immediate prospects]. Epidemiology and infectious diseases. Сorrent items 2014; (2): 73–9. (In Russ.).


9. Achtman M., van der Ende A., Zhu P., Koroleva I.S., Kusecek B., Morelli G. et al. Molecular Epidemiology of Serogroup A Meningitis in Moscow, 1969 to 1997. Emerg. Infect. Dis. 2001; (7): 420–7. https://doi.org/10.3201/ eid0703.010309


10. Королева И.С., Демина А.А., Платонов А.Е. Эпидемиологический надзор за гнойными бактериальными менингитами: материалы 20-летних наблюдений. Эпидемиология и вакцинопрофилактика 2003; (5): 10–3. Koroleva I.S., Demina A.A., Platonov A.E. [Epidemiological surveillance of purulent bacterial meningitis: materials of 20 years of observations]. Epidemiology and Vaccinal Prevention 2003; (5): 10–3. (In Russ.).


11. Шипулин Г.А., Королева И.С., Платонов А.Е., Миронов К.О., Закроева И.М., Браславская С.И. и др. Генетические субгруппы бактерий вида Neisseria meningitidis серогруппы А, выделенных от больных генерализованными формами менингококковой инфекции на территории Москвы в 1969–2006 гг. Журнал микробиологии, эпидемиологии и иммунобиологии 2008; (1): 7–12.

Shipulin G.A.. Koroleva I.S.. Platonov A.E.. Mironov K.O.. Zakroyeva I.M.. Braslavskaya S.I. et al. [Genetic subgroups of bacteria of the species Neisseria meningitidis, serogroup A, isolated from patients with generalized forms of meningococcal infection in Moscow in 1969–2006]. Journal of microbiology, еpidemiology and immunobiology 2008; (1): 7–12. (In Russ.).


12. Миронов К.О., Платонов А.Е., Дрибноходова О.П., Кусева В.И., Шипулин Г.А. Методика для определения серогрупп A, B, C и W Neisseria meningitidis методом ПЦР в режиме реального времени. Журн. микробиол. 2014; (6): 35–42.

Mironov K.O., Platonov A.E., Dribnokhodova O.P., Kuseva V.I., Shipulin G.A. [Method for the determination of serogroups A, B, C and W of Neisseria meningitidis by real-time PCR]. J. Microbiol. 2014; (6): 35–42. (In Russ.).


13. Fox A.J., Taha M.-K., Vogel U. Standardized nonculture techniques recommended for European reference laboratories. FEMS Microbiol. Rev. 2007; 31: 84–8. https://doi.org/10.1111/j.1574-6976.2006.00048.x


14. Миронов К.О. Клональные комплексы Neisseria meningitidis, циркулирующие на территории России, и их роль в эпидемическом роцессе менингококковой инфекции. Эпидемиол. инфекц. бол. Актуал. вопр. 2016; (6): 52–61.

Mironov K.O. [Clonal complexes of Neisseria meningitidis circulating in Russia and their role in the epidemic process of meningococcal infection]. Epidemiology and infectious diseases. Сorrent items 2016; (6): 52–61. (In Russ.).


15. Миронов К.О., Корчагин В.И., Михайлова Ю.В., Янушевич Ю.Г., Шеленков А.А., Чагарян А.Н. и др. Характеристика штаммов Streptococcus рneumoniae, выделенных от больных инвазивными пневмококковыми инфекциями, с использованием высокопроизводительного секвенирования. Журнал микробиологии, эпидемиологии и иммунобиологии 2020; 97(2): 113–8. https://doi.org/10. 36233/0372-9311-2020-97-2-113-118

Mironov K.O., Korchagin V.I., Mikhailova Y.V., Yanushevich Y.G., Shelenkov A.A, Chagaryan A.N. et al. [Characterization of Streptococcus pneumoniae strains causing invasive infections using whole-genome sequencing]. Journal of microbiology, epidemiology and immunobiology 2020; 97: 113–8. (In Russ.). https://doi.org/10. 36233/0372-9311-2020-97-2-113-118


16. Миронов К.О., Животова В.А., Матосова С.В., Кулешов К.В., Шипулина О.Ю., Гоптарь И.А. и др. Характеристика Neisseria meningitidis серогруппы W, циркулирующих на территории Москвы, c помощью массового параллельного секвенирования. Эпидемиология и вакцинопрофилактика 2017; (4): 33–8. https://doi.org/10.31631/2073-3046-2017-16-4-33-38

Mironov KO, Zhivotova VA, Matosova S V. [Whole genome characterization of Neisseria meningitidis serogroup W isolates, circulating in Moscow]. Epidemiology and Vaccinal Prevention 2017; (4): 33–8. https://doi.org/10.31631/2073-3046-2017-16-4-33-38.


17. Bratcher H.B., Corton C., Jolley K.A., Parkhill J., Maiden M.C.J. A gene-by-gene population genomics platform: De novo assembly, annotation and genealogical analysis of 108 representative Neisseria meningitidis genomes. BMC Genomics 2014; 15: 1138. https://doi.org/10.1186/1471-2164-15-1138.


18. Jolley K.A., Bray J.E., Maiden M.CJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018; (3): 124. https://doi.org/10.12688/ wellcomeopenres.14826.1.


19. Huson D.H., Bryant D. Application of Phylogenetic Networks in Evolutionary Studies. Mol. Biol. Evol. 2006; 23: 254–67. https://doi.org/10.1093/molbev/ msj030


About the Autors


Maria А. Koroleva, Cand. Med. Sci., Senior Researcher, Laboratory for Epidemiology of Meningococcal Infection and Purulent Bacterial Meningitis, Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being, Moscow, Russia; korolevamaria389@mail.ru; http://orcid.org/0000-0002-2714-1191
Maria I. Gritsay, Graduate student, Laboratory for Epidemiology of Meningococcal Infection and Purulent Bacterial Meningitis, Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being, Moscow, Russia; maria-griz@mail.ru
Konstantin O. Mironov, Head, Scientific group for Genetic Polymorphism Detection, Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being, Moscow, Russia; mironov@pcr.ru; http://orcid.org/ 0000-0001-8207-9215
Yuriy V. Yanushevich, Researcher, Laboratory of Molecular Mechanisms of Antibiotic Resistance, Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being, Moscow, Russia; yanushevich@cmd.su; http://orcid.org/0000-0001-9061-752X
Yuliya G. Mikhaylova, Head, Laboratory of Molecular Mechanisms of Antibiotic Resistance, Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being, Moscow, Russia; mihailova@cmd.su; http://orcid.org/0000-0002-5646-538X
Albina A. Melnikova, Deputy Head, Department of the Epidemiological Surveillance, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being, Moscow, Russia; melnikova_aa@gsen.ru
Irina S. Koroleva, MD, Head, Laboratory for Epidemiology of Meningococcal Infection and Purulent Bacterial Meningitis, Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being, Moscow, Russia; irina-korol@yandex.ru; http://orcid.org/0000-0003-0578-146X


Similar Articles


Бионика Медиа