Анализ запросов динамики Google Trends в России в период пандемии коронавирусной инфекции как инструмент эпидемиологического надзора


DOI: https://dx.doi.org/10.18565/epidem.2020.10.4.33-7

Момыналиев К.Т., Акимкин В.Г.

ФБУН «Центральный НИИ эпидемиологии» Роспотребнадзора, Москва, Россия
Пандемия коронавирусной инфекции (COVID-19) создала уникальную возможность исследовать закономерности активности пользователей в Интернете в связи с новым заболеванием и исследовать, как они связаны с реальными случаями заражения SARS-CoV-2.
Цель исследования. Эпидемиологическое и социальное изучение осведомленности населения Российской Федерации о новой коронавирусной инфекции — COVID-19.
Материалы и методы. Проведен анализ запросов по теме «COVID-19», полученных из Google Trends, за период с 09.01 по 24.09 2020 г.
Результаты. Поисковая активность по запросам, которые могут быть связаны с симптомами COVID-19 «обоняние» и «потеря обоняния», имеет выраженную позитивную корреляцию с подтвержденным числом случаев заболевания в России (r = 0,81 для запроса «обоняние» и r = 0,79 для запроса «потеря обоняния»). Между запросами «кашель», «мокрота» и реальными случаями заражения была выявлена сильная и средняя отрицательная корреляция: - 0,72 и - 0,53 соответственно. Также сильная положительная корреляция выявлена между реальными случаями заражения и запросами, связанными с диагностикой COVID-19: «КТ» (компьютерная томография; r = 0,71) и «антитела» (r = 0,79).
Заключение. Связь между относительным объемом поиска в Интернете и подтвержденным числом случаев может иметь важное значение для мониторинга быстро меняющейся эпидемической ситуации, когда требуется актуальная информация о распространении заболевания.

Литература


1. Mollema L., Harmsen I.A., Broekhuizen E., Clijnk R., De Melker H., Paulussen T. Et al. Disease detection or public opinion reflection? Content analysis of tweets, other social media, and online newspapers during the measles outbreak in The Netherlands in 2013. J. Med. Intern. Res. 2015; 17(5): e128. Doi: 10.2196/jmir.3863. https://www.jmir.org/2015/5/e128/


2. Chen Y., Zhang Y., Xu Z., Wang X., Lu J., Hu W. Avian influenza A (H7N9) and related Internet search query data in China. Sci. Rep. 2019; 9(1): 10434. Doi: 10.1038/s41598-019-46898-y


3. Mohamed N.A. Knowledge, attitude and practice on bats-borne diseases among village residents: a pilot study. Med & Health 2018; 13(2): 48–57. Doi: 10. 17576/MH. https://www.cabdirect.org/globalhealth/abstract/20193459604


4. Zeraatkar K., Ahmadi M. Trends of infodemiology studies: a scoping review. Health Info Libr. J. 2018; 35(2): 91–120. Doi: 10.1111/hir.12216


5. Tang L., Bie B., Park S., Zhi D. Social media and outbreaks of emerging infectious diseases: A systematic review of literature. Am. J. Infect. Control. 2018; 46(9): 962–72. Doi: 10.1016/j.ajic.2018.02.010


6. Eysenbach G. SARS and population health technology. J. Med. Intern. Res. 2003; 5(2): e14. Doi: 10.2196/ jmir.5.2.e14


7. Mavragani A., Ochoa G. Infoveillance of infectious diseases in USA: STDs, tuberculosis, and hepatitis. J. Big. Data 2018; 5(1). Doi: 10.1186/s40537-018-0140-9


8. Roccetti M., Marfia G., Salomoni P., Prandi C., Zagari R.M., Gningaye Kengni F.L. et al. Attitudes of Crohn’s Disease Patients: Infodemiology Case Study and Sentiment Analysis of Facebook and Twitter Posts. JMIR Public Health Surveill. 2017; 3(3): e51. Doi: 10.2196/publichealth.7004


9. Mavragani A., Ochoa G. Google Trends in Infodemiology and Infoveillance: Methodology Framework. JMIR Public Health Surveill. 2019; 5(2): e13439. Doi: 10.2196/13439


10. Mavragani A., Ochoa G.. Tsagarakis KP (2018) Assessing the methods, tools, and statistical approaches in Google Trends research: systematic review. J. Med. Intern. Res. 2018; 20(11): e270.


11. Ginsberg J., Mohebbi M., Patel R. et al. Detecting influenza epidemics using search engine query data. Nature 2009; 457: 1012–4.


12. Shin S.Y., Seo D., An J. et al. High correlation of Middle East respiratory syndrome spread with Google search and Twitt.er trends in Korea. Sci. Rep. 2016; 6(2): 32920.


13. Google Trends. https://trends.google.com/trends/?geo=US


14. Wang C., Horby P.W., Hayden F.G., Gao G.F. A novel coronavirus outbreak of global health concern. Lancet 2020; 395(10223): 470–3. Doi: 10.1016/s0140-6736(20)30185-9


15. Guan W., Ni Z., Hu Y., Liang W., Ou C., He J. et al China Medical Treatment Expert Group for Covid-19 Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020; 382(18): 1708–20. Doi: 10.1056/NEJMoa2002032


16. Chow E.J., Schwartz N.G., Tobolowsky F.A., Zacks R.L.T., Huntington-Frazier M., Reddy S.C., Rao A.K. Symptom screening at illness onset of health care personnel with SARS-CoV-2 infection in King County, Washington. JAMA 2020; 323(20): 2087–9. Doi: 10.1001/jama.2020.6637


17. World Health Organization.


18. Временные методические рекомендации «Профилак­тика, диагностика и лечение новой коронавирусной инфекции (COVID-19)». https://static-0.rosminzdrav.ru/system/attachments/attaches/000/050/584/original/03062020_МR_COVID-19_v7.pdf

[Prevention, diagnosis and treatment of new coronavirus infection (COVID-19]. (In Russ.). https://static-0.rosminzdrav.Ru/system/attachments/attaches/ 000/050/584/original/03062020_МR_ COVID-19_v7.pdf


19. Ayyoubzadeh S.M., Zahedi H., Ahmadi M. Predicting COVID-19 incidence using Google Trends and data mining techniques: a pilot study in Iran. JMIR Public Health Surveill. 2020; 6(2): e18828


20. Walker M.D., Sulyok M. Online behavioural patterns for Coronavirus disease 2019 (COVID-19) in the United Kingdom. Epidemiology and Infection 2020; 148: e110. doi: 10.1017/S0950268820001193


21. Rovetta A., Bhagavathula A. COVID-19-Related Web Search Behaviors and Infodemic Attitudes in Italy: Infodemiological Study. JMIR Public Health Surveill. 2020; 6(2): e19374. Doi: 10.2196/19374


22. Effenberger M., Kronbichler A., Shin J.I., Mayer G., Tilg H., Perco P. Association of the COVID-19 pandemic with Internet Search Volumes: A Google Trends TM Analysis. Int. J. Infect. Dis. 2020; 95: 192–7. Doi:10.1016/j.ijid.2020.04.033


23. Hu D., Lou X., Xu Z. et al. More effective strategies are required to strengthen public awareness of COVID-19: Evidence from Google Trends. J. Glob. Health 2020; 10(1): 011003. Doi:10.7189/jogh.10.011003


24. Higgins T.S., Wu A.W., Sharma D. et al. Correlations of Online Search Engine Trends With Coronavirus Disease (COVID-19) Incidence: Infodemiology Study. JMIR Public Health Surveill. 2020; 6(2): e19702. Doi:10.2196/19702


25. Walker A., Hopkins C., Surda P. Use of Google Trends to investigate loss-of-smell-related searches during the COVID-19 outbreak. Int. Forum Allergy Rhinol. 2020; 10(7): 839–47. Doi:10.1002/alr.22580


Об авторах / Для корреспонденции


Момыналиев Куват Темиргалиевич – д.б.н., доцент, ведущий научный сотрудник, ФБУН «Центральный НИИ эпидемиологии» Роспотребнадзора, Москва, Россия; е-mail: dhoroshun@gmail.com; ORCID: https://orcid.org/0000-0003-4656-1025
Акимкин Василий Геннадьевич – академик РАН, д.м.н., профессор, директор ФГБУ «Центральный НИИ эпидемиологии» Роспотребнадзора, Москва, Россия; е-mail: vgakimkin@yandex.ru; ORCID: http://orcid.org/0000-0003-4228-9044


Похожие статьи


Бионика Медиа