Single nucleotide polymorphisms in Toll-like receptor genes associated with the risk of tuberculosis and other diseases of the lower respiratory tract


DOI: https://dx.doi.org/10.18565/epidem.2023.13.4.57-61

Salamaikina S.A., Mironov K.O.

1) Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being, Moscow, Russia; 2) Moscow Institute of Physics and Technology, Moscow, Russia
The Toll-like receptor (TLR) family plays important roles in pathogen recognition and control and regulation of inflammation. Single nucleotide polymorphisms (SNPs) in TLR genes can disrupt the functioning of certain signaling pathways, which increases the risk of infectious diseases and may lead to an increased risk of complications of other bronchopulmonary pathologies. A review of studies on the association of SNPs in TLR genes with lower respiratory tract diseases, conducted in accordance with the PRISMA-ScR protocol, is presented. The extent of studies conducted, the representation of subpopulations and geographic regions, as well as risk factors and the severity of infectious diseases in carriers of risk alleles were assessed.

Literature


1. Duan T., Du Y., Xing C., Wang H.Y., Wang R.F. Toll-like receptor signaling and its role in cell-mediated immunity. Front. Immunol. 2022; 13: 812774. doi: 10.3389/fimmu.2022.812774


2. Asami T., Ishii M., Namkoong H., Yagi K., Tasaka S., Asakura T. et al. Anti-inflammatory roles of mesenchymal stromal cells during acute Streptococcus pneumoniae pulmonary infection in mice. Cytotherapy 2018; 20(3): 302–13. doi: 10.1016/j.jcyt.2018.01.003


3. Baral P., Batra S., Zemans R.L., Downey G.P., Jeyaseelan S. Divergent functions of Toll-like receptors during bacterial lung infections. Am. J. Respir. Crit. Care. Med. 2014; 190(7): 722–32. doi: 10.1164/rccm.201406-1101PP


4. Zhao Y., Kuang M., Li J., Zhu L., Jia Z., Guo X. et al. SARS-CoV-2 spike protein interacts with and activates TLR41. Cell Res. 2021; 31(7): 818–20. doi: 10.1038/s41422-021-00495-9


5. DePaolo R.W., Kamdar K., Khakpour S., Sugiura Y., Wang W., Jabri B. A specific role for TLR1 in protective T(H)17 immunity during mucosal infection. J. Exp. Med. 2012; 209(8): 1437–44. doi: 10.1084/jem.20112339


6. Sugiura Y., Kamdar K., Khakpour S., Young G., Karpus W.J., DePaolo R.W. TLR1-induced chemokine production is critical for mucosal immunity against Yersinia enterocolitica. Mucosal Immunol. 2013; 6(6): 1101–9. doi: 10.1038/mi.2013.5


7. Kawasaki T., Kawai T. Toll-like receptor signaling pathways. Front. Immunol. 2014; (5): 461. doi: 10.3389/fimmu.2014.00461


8. Caballero I., Al Ghareeb S., Basatvat S., Sánchez-López J.A., Montazeri M., Maslehat N. et al. Human trophoblast cells modulate endometrial cells nuclear factor κB response to flagellin in vitro. PLoS One 2013; 8(1): e39441. doi: 10.1371/journal.pone.0039441


9. Cai Z., Sanchez A., Shi Z., Zhang T., Liu M., Zhang D. Activation of Toll-like receptor 5 on breast cancer cells by flagellin suppresses cell proliferation and tumor growth. Cancer Res. 2011; 71(7): 2466–75. doi: 10.1158/0008-5472.CAN-10-1993


10. Carvalho F.A., Aitken J.D., Vijay-Kumar M., Gewirtz A.T. Toll-like receptor-gut microbiota interactions: perturb at your own risk! Annu. Rev. Physiol. 2012; 74: 177–98. doi: 10.1146/annurev-physiol-020911-153330


11. Muñoz N., Van Maele L., Marqués J.M., Rial A., Sirard J.C., Chabalgoity J.A. Mucosal administration of flagellin protects mice from Streptococcus pneumoniae lung infection. Infect. Immun. 2010; 78(10): 4226–33. doi: 10.1128/IAI.00224-10


12. Munukka E., Wiklund P., Partanen T., Välimäki S., Laakkonen E.K., Lehti M. et al. Adipocytes as a link between gut microbiota-derived flagellin and hepatocyte fat accumulation. PLoS One 2016; 11(4): e0152786. doi: 10.1371/journal.pone.0152786


13. Asami J., Shimizu T. Structural and functional understanding of the toll-like receptors. Protein Sci. 2021; 30(4): 761–72. doi: 10.1002/pro.4043


14. Behzadi P., García-Perdomo H.A., Karpiński T.M. Toll-Like Receptors: General Molecular and Structural Biology. J. Immunol. Res. 2021: 9914854. doi: 10.1155/2021/9914854


15. Randhawa A.K., Shey M.S., Keyser A., Peixoto B., Wells R.D., de Kock M. et al. South African Tuberculosis Vaccine Initiative Team. Association of human TLR1 and TLR6 deficiency with altered immune responses to BCG vaccination in South African infants. PLoS Pathog. 2011; 7(8): e1002174. doi: 10.1371/journal.ppat.1002174


16. de Marcken M., Dhaliwal K., Danielsen A.C., Gautron A.S., Dominguez-Villar M. TLR7 and TLR8 activate distinct pathways in monocytes during RNA virus infection. Sci. Signal. 2019; 12(605): eaaw1347. doi: 10.1126/scisignal.aaw1347


17. Pabst S., Bradler O., Gillissen A., Nickenig G., Skowasch D., Grohe C. Toll-like receptor-9 polymorphisms in sarcoidosis and chronic obstructive pulmonary disease. Adv. Exp. Med. Biol. 2013; 756: 239-45. doi: 10.1007/978-94-007-4549-0_30


18. Karnaushkina M.A., Guryev A.S., Mironov K.O., Dunaeva E.A., Korchagin V.I., Bobkova O.Y. et al. Associations of toll-like receptor gene polymorphisms with NETosis activity as prognostic criteria for the severity of pneumonia. Sovrem. Tekhnologii Med. 2021; 13(3): 47–53. doi: 10.17691/stm2021.13.3.06.


19. Tricco A.C., Lillie E., Zarin W., O’Brien K.K., Colquhoun H., Levac D. et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018; 169(7): 467–73. doi: 10.7326/M18-0850


20. Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D. et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J. Clin. Epidemiol. 2021; 134: 178–89. doi: 10.1016/j.jclinepi.2021.03.001


21. Portelli M.A., Dijk F.N., Ketelaar M.E., Shrine N., Hankinson J., Bhaker S. et al. Phenotypic and functional translation of IL1RL1 locus polymorphisms in lung tissue and asthmatic airway epithelium. JCI Insight. 2020; 5(8): e132446. doi: 10.1172/jci.insight.132446


22. Hlapčić I., Grdić Rajković M., Čeri A., Dabelić S., Popović-Grle S., Radić Antolic M. et al. Increased HSP70 and TLR2 Gene Expression and Association of HSP70 rs6457452 Single Nucleotide Polymorphism with the Risk of Chronic Obstructive Pulmonary Disease in the Croatian Population. Diagnostics (Basel.) 2021; 11(8): 1412. doi: 10.3390/diagnostics11081412


23. Arora S., Ahmad S., Irshad R., Goyal Y., Rafat S., Siddiqui N. et al. TLRs in pulmonary diseases. Life sciences 2019; 233: 116671. https://doi.org/10.1016/j.lfs.2019.116671


24. Dittrich N., Berrocal-Almanza L.C., Thada S., Goyal S., Slevogt H., Sumanlatha G. et al. Toll-like receptor 1 variations influence susceptibility and immune response to Mycobacterium tuberculosis. Tuberculosis (Edinb.) 2015; 95(3): 328–35. doi: 10.1016/j.tube.2015.02.045


25. Qi H., Sun L., Wu X., Jin Y., Xiao J., Wang S. et al. Toll-like receptor 1 (TLR1) gene ОНП rs5743618 is associated with increased risk for tuberculosis in Han Chinese children. Tuberculosis (Edinb.) 2015; 95(2): 197–203. doi: 10.1016/j.tube.2014.12.001


26. Ocejo-Vinyals J.G., Puente de Mateo E., Ausín F., Agüero R., Arroyo J.L., Gutiérrez-Cuadra M. et al. Human toll-like receptor 1 T1805G polymorphism and susceptibility to pulmonary tuberculosis in northern Spain. Int. J. Tuberc. Lung Dis. 2013; 17(5): 652–4. doi: 10.5588/ijtld.12.0767. PMID: 23575331


27. Meyer C.G., Reiling N., Ehmen C., Ruge G., Owusu-Dabo E., Horstmann R.D. et al. TLR1 Variant H305L associated with protection from pulmonary tuberculosis. PLoS One 2016; 11(5): e0156046. doi: 10.1371/journal.pone.0156046


28. Uciechowski P., Imhoff H., Lange C., Meyer C.G., Browne E.N., Kirsten D.K. et al. Susceptibility to tuberculosis is associated with TLR1 polymorphisms resulting in a lack of TLR1 cell surface expression. J. Leukoc. Biol. 2011; 90(2): 377–88. doi: 10.1189/jlb.0409233


29. Soedarsono S., Amin M., Tokunaga K., Yuliwulandari R., Suameitria Dewi D.N.S., Mertaniasih N.M. Association of disease severity with toll-like receptor polymorphisms in multidrug-resistant tuberculosis patients. Int. J. Mycobacteriol. 2020; 9(4): 380–90. doi: 10.4103/ijmy.ijmy_175_20


30. Zhang J., Zhao Z., Zhong H., Wu L., Zhou W., Peng W. et al. Importance of common TLR2 genetic variants on clinical phenotypes and risk in tuberculosis disease in a Western Chinese population. Infect. Genet. Evol. 2018; 60: 173–80. doi: 10.1016/j.meegid.2018.02.031


31. Arji N., Busson M., Iraqi G., Bourkadi J.E., Benjouad A., Bouayad A. et al. Genetic diversity of TLR2, TLR4, and VDR loci and pulmonary tuberculosis in Moroccan patients. J. Infect. Dev. Ctries 2014; 8(4): 430-40. doi: 10.3855/jidc.3820


32. Varzari A., Deyneko I.V., Vladei I., Grallert H., Schieck M., Tudor E., et al. Genetic variation in TLR pathway and the risk of pulmonary tuberculosis in a Moldavian population. Infect. Genet. Evol. 2019; 68: 84–90. doi: 10.1016/j.meegid.2018.12.005


33. Baker A.R., Qiu F., Randhawa A.K., Horne D.J., Adams M.D. et al. Tuberculosis Research Unit and South African Tuberculosis Vaccine Initiative Team. Genetic variation in TLR genes in Ugandan and South African populations and comparison with HapMap data. PLoS One 2012; 7(10): e47597. doi: 10.1371/journal.pone.0047597


34. Mandala J.P., Ahmad S., Pullagurla A., Thada S., Joshi L., Ansari M.S.S. et al. Toll-like receptor 2 polymorphisms and their effect on the immune response to ESAT-6, Pam3CSK4 TLR2 agonist in pulmonary tuberculosis patients and household contacts. Cytokine 2020; 126: 154897. doi: 10.1016/j.cyto.2019.154897


35. Wu L., Hu Y., Li D., Jiang W., Xu B. Screening toll-like receptor markers to predict latent tuberculosis infection and subsequent tuberculosis disease in a Chinese population. BMC Med. Genet. 2015; 16: 19. doi: 10.1186/s12881-015-0166-1


36. Han J., Ning P., Ge A., Ma X., Alexander Burton J., Yang C. et al. Association of polymorphisms of innate immunity-related genes and tuberculosis susceptibility in Mongolian population. Hum. Immunol. 2021; 82(4): 232–9. doi: 10.1016/j.humimm.2021.02.008


37. Thada S., Horvath G.L., Müller M.M., Dittrich N., Conrad M.L., Sur S. et al. Interaction of TLR4 and TLR8 in the innate immune response against Mycobacterium Tuberculosis. Int. J. Mol. Sci. 2021; 22(4): 1560. doi: 10.3390/ijms22041560


38. Wang M.G., Zhang M.M., Wang Y., Wu S.Q., Zhang M., He J.Q. Association of TLR8 and TLR9 polymorphisms with tuberculosis in a Chinese Han population: a case-control study. BMC Infect. Dis. 2018; 18(1): 561. doi: 10.1186/s12879-018-3485-y


39. Bukhari M., Aslam M.A., Khan A., Iram Q., Akbar A., Naz A.G. et al. TLR8 gene polymorphism and association in bacterial load in southern Punjab of Pakistan: an association study with pulmonary tuberculosis. Int. J. Immunogenet. 2015; 42(1): 46–51. doi: 10.1111/iji.12170


40. Kobayashi K., Yuliwulandari R., Yanai H., Naka I., Lien L.T., Hang N.T. et al. Association of TLR polymorphisms with development of tuberculosis in Indonesian females. Tissue Antigens 2012; 79(3): 190–7. doi: 10.1111/j.1399-0039.2011.01821.x


41. Torres-García D., Cruz-Lagunas A., García-Sancho Figueroa M.C., Fernández-Plata R., Baez-Saldaña R. et al. Variants in toll-like receptor 9 gene influence susceptibility to tuberculosis in a Mexican population. J. Transl. Med. 2013; 11: 220. doi: 10.1186/1479-5876-11-220


42. Graustein A.D., Horne D.J., Arentz M., Bang N.D., Chau T.T., Thwaites G.E. et al. TLR9 gene region polymorphisms and susceptibility to tuberculosis in Vietnam. Tuberculosis (Edinb.) 2015; 95(2): 190–6. doi: 10.1016/j.tube.2014.12.009


43. Mittal M., Biswas S.K., Singh V., Arela N., Katoch V.M., Das R. et al. Association of Toll like receptor 2 and 9 gene variants with pulmonary tuberculosis: exploration in a northern Indian population. Mol. Biol. Rep. 2018; 45(4): 469–76. doi: 10.1007/s11033-018-4182-z


44. Wu L., Hu Y., Li D., Jiang W., Xu B. Screening toll-like receptor markers to predict latent tuberculosis infection and subsequent tuberculosis disease in a Chinese population. BMC Med. Genet. 2015; 16: 19. doi: 10.1186/s12881-015-0166-1


45. Bulat-Kardum L.J., Etokebe G.E., Lederer P., Balen S., Dembic Z. Genetic polymorphisms in the Toll-like receptor 10, Interleukin (IL)17A and IL17F genes differently affect the risk for tuberculosis in Croatian population. Scand. J. Immunol. 2015; 82(1): 63–9. doi: 10.1111/sji.12300


46. Daley D., Park J.E., He J.Q., Yan J., Akhabir L., Stefanowicz D. et al. Associations and interactions of genetic polymorphisms in innate immunity genes with early viral infections and susceptibility to asthma and asthma-related phenotypes. J. Allergy Clin. Immunol. 2012; 130(6): 1284–93. doi: 10.1016/j.jaci.2012.07.051


47. Ortiz-Martínez M.G., Frías-Belén O., Nazario-Jiménez S., López-Quintero M., Rodríguez-Cotto R.I., Jiménez-Vélez B.D. A case-control study of innate immunity pathway gene polymorphisms in Puerto Ricans reveals association of toll-like receptor 2 +596 variant with asthma. BMC Pulm. Med. 2016; 16(1): 112. doi: 10.1186/s12890-016-0272-7


48. Lauhkonen E., Koponen P., Vuononvirta J., Teräsjärvi J., Nuolivirta K., Toikka J.O. et al. Gene polymorphism of Toll-Like receptors and lung function at five to seven years of age after infant bronchiolitis. PLoS One 2016; 11(1): e0146526. doi: 10.1371/journal.pone.0146526


49. Zhang Q., Qian F.H., Yin X.W., Cao Q., Bai J.L., Du Q., Shi Y. Associations of Toll-like receptor 7 and 8 polymorphisms with asthma and asthma-related phenotypes in a Chinese Han population. Iran J. Allergy Asthma Immunol. 2015; 14(6): 569–80.


50. Ito M., Hanaoka M., Droma Y., Kobayashi N., Yasuo M., Kitaguchi Y. et al. The association of Toll-like receptor 4 gene polymorphisms with the development of emphysema in Japanese subjects: a case control study. BMC Res. Notes. 2012; (5): 36. doi: 10.1186/1756-0500-5-36


51. Berenson C.S., Kruzel R.L., Wrona C.T., Mammen M.J., Sethi S. Impaired innate COPD alveolar macrophage responses and Toll-Like receptor-9 polymorphisms. PLoS One. 2015; 10(9): e0134209. doi: 10.1371/journal.pone.0134209


52. Haerynck F., Mahachie J.M., Van Steen K., Schelstraete P., Van daele S., Loeys B. et al. Genetic variations in toll-like receptor pathway and lung function decline in Cystic fibrosis patients. Hum. Immunol. 2013; 74(12): 1649–55. doi: 10.1016/j.humimm.2013.08.282


53. Salamaikina S., Karnaushkina M., Korchagin V., Litvinova M., Mironov K., Akimkin V. TLRs Gene Polymorphisms Associated with Pneumonia before and during COVID-19 Pandemic. Diagnostics 2023; 13(1): 121. doi: 10.3390/diagnostics13010121


54. Пшеничная Н.Ю., Гопаца Г.В., Углева С.В., Сергевнин В.И., Кудрявцева Л.Г., Лазарьков П.В. Эпидемиологические аспекты респираторных инфекций верхних и нижних отделов дыхательных путей в период пандемии COVID-19. Эпидемиол. инфекц. болезни. Актуал. вопр. 2022; 12(4): 72–6. doi: 10/18565/epidem.2022.12.4.72-6


Pshenichnaya N.Yu., Gopatsa G.V., Ugleva S.V., Sergevnin V.I., Kudryavceva L.G., Lazarykov P.V. (Epidemiological aspects of upper and lower respiratory tract infections during the COVID-19). Epidemiоlоgy and infectious diseases. Сurrent items 2022; 12(4): 72–6. (In Russ.). DOI: 10.18565/epidem.2022.12.4.72–6


About the Autors


Svetlana A. Salamaikina, Researcher, Laboratory of Molecular Methods for Studying Genetic Polymorphisms, Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being; Postgraduate Student, Moscow Institute of Physics and Technology (MIPT), Moscow, Russia; salamaykina@cmd.su; https://orcid.org/0000-0002-2517-5048
Konstantin O. Mironov, MD, Head, Laboratory of Molecular Methods for Studying Genetic Polymorphisms, Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being, Moscow, Russia; mironov@pcr.ru; https://orcid.org/0000-0001-8207-9215


Similar Articles


Бионика Медиа