Impact of the organism’s genetic traits on the development of secondary and concomitant diseases in patients with HIV infection


DOI: https://dx.doi.org/10.18565/epidem.2020.10.3.66-72

Kanestri V.G., Popova A.A., Kulabukhova E.I., Shakhgildyan V.I.

1) Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being, Moscow, Russia; 2) H-Clinic University Clinic, Moscow, Russia; 3) Peoples’ Friendship University of Russia, Moscow, Russia
The review gives the data of clinical trials investigating the impact of genetic sequences in HIV-infected patients on the development of pathological conditions, secondary and concomitant diseases (mycobacterial, herpesvirus, cytomegalovirus, and HPV infections, impaired lipid and carbohydrate metabolism and neurocognitive functions, gynecological diseases, etc.), as well as on the effectiveness of vaccination. The introduction of molecular genetic approaches in biomedicine can have certain advantages over immunological, microbiological, and histological methods.

Literature


1. Bernasconi E., Boubaker K., Junghans C., Flepp M., Furrer H.J., Haensel A. et al. Abnormalities of body fat distribution in HIV-infected persons treated with antiretroviral drugs: the Swiss HIV Cohort Study. J. Acquir. Immune Defic. Syndr., 2002; 31(1): 50–5. DOI: 10.1097/00126334-200209010-00007


2. Fontas E., van Leth F., Sabin C.A., Friis-Møller N., Rickenbach M., d’Arminio Monforte A. et al. Lipid profiles in HIV-infected patients receiving combination antiretroviral therapy: are different antiretroviral drugs associated with different lipid profiles? J. Infect. Dis. 2004; 189(6): 1056–74. DOI: 10.1086/381783


3. Bastard J.P., Caron M., Vidal H., Jan V., Auclair M., Vigouroux C. et al. Association between altered expression of adipogenic factor SREBP1 in lipoatrophic adipose tissue from HIV-1-infected patients and abnormal adipocyte differentiation and insulin resistance. Lancet 2002; 359(9311): 1026–31. DOI: https://doi.org/10.1016/S0140-6736(02)08094-7


4. Mahley R.W., Rall S.C. Jr. Apolipoprotein E: far more than a lipid transport protein. Annu Rev. Genomics Hum. Genet. 2000; (1): 507–37. DOI:10.1146/annurev.genom.1.1.507


5. Li W.W., Dammerman M.M., Smith J.D., Metzger S., Breslow J.L., Leff T. Common genetic variation in the promoter of the human apo CIII gene abolishes regulation by insulin and may contribute to hypertriglyceridemia . J. Clin. Invest. 1995; 96(6): 2601–5. DOI: 10.1172/JCI118324


6. Maher B., Alfirevic A., Vilar F.J., Wilkins E.G., Park B.K., Pirmohamed M. TNF-alpha promoter region gene polymorphisms in HIV-positive patients with lipodystrophy. AIDS 2002; 16(15): 2013–8. DOI: 10.1097/00002030-200210180-00005


7. Nolan D., Moore C., Castley A., Sayer D., Mamotte C., John M. et al. Tumour necrosis factor-alpha gene -238G/A promoter polymorphism associated with a more rapid onset of lipodystrophy. AIDS 2003; 17(1): 121–3


8. Tarr P.E., Taffé P., Bleiber G., Furrer H., Rotger M., Martinez R. et al. Modeling the influence of APOC3, APOE, and TNF polymorphisms on the risk of antiretroviral therapy-associated lipid disorders. J. Infect. Dis. 2003; 17(1): 121–3. DOI: 10.1097/00002030-200301030-00017


9. Egaña-Gorroño L., Martínez E., Cormand B., Escribà T., Gatell J., Arnedo M. Impact of genetic factors on dyslipidemia in HIV-infected patients starting antiretroviral therapy. AIDS 2013; 27(4): 529–38. DOI: 10.1097/QAD.0b013e32835d0da1


10. Pociot F., McDermott M.F. Genetics of type 1 diabetes mellitus. Genes Immun. 2002; 3(5): 235–49. DOI: 10.1038/sj.gene.6363875


11. Канестри В.Г., Миронов К.О., Кравченко А.В., Пок­ровская А.В., Киреев Д.В., Дрибноходова О.П., Дуна­ева Е.А., Цыганова Г.М., Харбутли М.А., Голиу­сова М.Д., Коннов В.В., Козырина Н.В., Шахгильдян В.И., Куимова У.А., Попова А.А., Ефремова О.С., Коннов Д.С.. Генетические маркеры клинически выраженных нежелательных явлений у больных ВИЧ-инфекцией, получающих антиретровирусную терапию. ВИЧ-инфекция и иммуносупрессии 2014; 6(2): 49–57. https://doi.org/10.22328/2077-9828-2014-6-2-49-57

Kanestri V.G., Mironov K.O., Kravchenko A.V., Pokrovskaya A.V., Kireev D.V., Dribnochodova O.P., Dunaeva E.A., Tsiganova G.M., Kcharbutli M.A., Goliusova M.D., Konnov V.V., Kozirina N.V., Shakhgildyan V.I., Kuimova U.A., Popova A.A., Efremova O.S., Konnov D.S. [Genetic markers of clinically significant adverse events in HIV patients receiving antiretroviral therapy]. HIV-infectiya i immunosupressii 2014; 6(2): 49–57. (In Russ.). https://doi.org/10.22328/2077-9828-2014-6-2-49-57


12. Levine A.J., Panos S.E., Horvath S. Genetic, transcriptomic, and epigenetic studies of HIV-associated neurocognitive disorder. J. Acquir. Immune Defic. Syndr. 2014; 65(4): 481–503. DOI: 10.1097/QAI.0000000000000069


13. Morgan E.E., Woods S.P., Letendre S.L., Franklin D.R., Bloss C., Goate A. et al. Apolipoprotein E4 genotype does not increase risk of HIV-associated neurocognitive disorders. J. Neurovirol. 2013; 19(2): 150–6. doi: 10.1007/s13365-013-0152-3.


14. WHO. Global tuberculosis report 2019. https://www.who.int/tb/global-report-2019


15. Raghavan S., Alagarasu K., Selvaraj P. Immunogenetics of HIV and HIV associated tuberculosis. Tuberculosis 2012; 92(1): 8–30. DOI: 10.1016/j.tube.2011.08.004


16. Alagarasu K., Selvaraj P., Swaminathan S., Raghavan S., Narendran G., Narayanan P.R. Mannose binding lectin gene variants and susceptibility to tuberculosis in HIV-1 infected patients of South India. Tuberculosis (Edinb.) 2007; 87(6): 535–43. DOI: 10.1016/j.tube.2007.07.007


17. Garcia-Laorden M.I., Pena M.J., Caminero J.A., Garcia-Saavedra A., Campos-Herrero M.I., Caballero A., Rodriguez-Gallego C. Influence of mannose-binding lectin on HIV infection and tuberculosis in a Western-European population. Mol. Immunol. 2006; 43(14): 2143–50.


18. Pulido I., Leal M., Genebat M., Pacheco Y.M., Sáez M.E., Soriano-Sarabia N. The TLR4 ASP299GLY polymorphism is a risk factor for active tuberculosis in Caucasian HIV-infected patients. Curr. HIV Res. 2010; 8(3): 253–8. DOI: ABS-66a [pii]


19. Байке Е.Е., Богодухова Е.С. Pоль генетического полиморфизма Tоll–подобных рецепторов в развитии туберкулеза у больных ВИЧ–инфекцией. Забайкальский медицинский вестник 2018; (2): 1–6.

Baike E.E., Bogoduhova E.S. [The role of Toll-like receptor genetic polymorphism in the development of tuberculosis in HIV-infected patients]. Zabaykalskiy meditsinskiy vestnik 2018; (2): 1–6. (In Russ.).


20. Кулабухова Е.И., Миронов К.О., Дунаева Е.А., Киреев Д.Е., Наркевич А.Н., Зимина В.Н., Кравченко А.В. Ассоциация полиморфизмов в генах Toll-подобных рецепторов и маннозосвязывающего лектина с риском развития туберкулеза у пациентов с ВИЧ-инфекцией. ВИЧ-инфекция и иммуносупрессии 2019; (4): 61–9.

Kulabuhova E.I., Mironov K.O., Dunaeva E.A., Kireev D.E., Narkevich A.N., Zimina V.N., Kravchenko A.V. [Association of polymorphisms in the genes of Toll-like receptors and mannose-binding lectin with a risk of developing tuberculosis in patients with HIV-infection]. VICh-infektsiya i immunosupressii 2019; (4): 61–9. (In Russ.).


21. Namale P.E., Abdullahi L.H., Fine S., Kamkuemah M., Wilkinson R.J., Meintjes G. Paradoxical TB-IRIS in HIV-infected adults: a systematic review and metaanalysis. Future Microbiol. 2015; 10(6): 1077–99. http://www. ncbi.nlm.nih.gov/pubmed/26059627


22. De Sá N.B.R., Ribeiro-Alves M., da Silva T.P., Pilotto J.H., Rolla V.C., Giacoia-Gripp C.B.W. et al. Clinical and genetic markers associated with tuberculosis, HIV-1 infection, and TB/HIV-immune reconstitution inflammatory syndrome outcomes. BMC Infect. Dis. 2020; 20(1): 59. doi: 10.1186/s12879-020-4786-5


23. Бартлетт Дж., Галант Дж., Фам П. Клинические аспекты ВИЧ-инфекции. Пер. с англ. М.: Р. Валент, 2012. 528 с.

Bartlett J., Galant J., Fam P. [Clinical aspects of HIV-infection]. Moscow: R. Valent, 2012. 528 p. (In Russ.).


24. Ермак Т.Н., Кравченко А.В., Шахгильдян В.И., Перегудова А.Б., Голиусова М.Д., Ядрихинская М.С. Развитие оппортунистических поражений у больных ВИЧ-инфекцией при отсутствии выраженного иммунодефицита. Тер. архив 2018; 90(11): 9–11.

Ermak T.N., Kravchenko A.V., Shakhgildyan V.I., Peregudova A.B., Goliusova M.D., Yadrihinskaya M.S. [The development of opportunistic lesions in patients with HIV infection in the absence of severe immunodeficiency]. Terapevticheskiy Archive 2018; 90(11): 9–11. (In Russ.).


25. Uzé G., Monneron D. IL-28 and IL-29: Newcomers to the interferon family. Biochimie 2007; 89: 729–34. doi: 10.1016/j.biochi.2007.01.008


26. Srinivas S., Dai J., Eskdale J., Gallagher G.E., Megjugorac N.J., Gallagher G. Interferon-λ1 (interleukin-29) preferentially down-regulates interleukin-13 over other T helper type 2 cytokine responses in vitro. Immunology 2008; 125: 492–502. doi: 10.1111/j.1365-2567.2008.02862.x


27. Li J., Hu S., Zhou L., Ye L., Wang X., Ho J., Ho W. Interferon lambda inhibits herpes simplex virus type I infection of human astrocytes and neurons. Glia 2011; 59: 58–67. doi: 10.1002/glia.21076


28. Savić B., Stanojlović S., Hadži-Milić M., Đonović N., Milošević-Đorđević O., Milisavljević F. et al. IL28B Genetic Variations in Patients with Recurrent Herpes Simplex Keratitis. Medicina (Kaunas) 2019; 55(10). pii: E642. doi: 10.3390/medicina55100642


29. Langhans B., Kupfer B., Braunschweiger I., Arndt S., Schulte W., Nischalke H.D. et al. Interferon-lambda serum levels in hepatitis C. J. Hepatol. 2011; 54: 859–65. doi: 10.1016/j.jhep.2010.08.020


30. Покровский В.В. (ред.). ВИЧ-инфекция и СПИД. Национальное руководство. 2-е изд., перераб. и доп. М.: ГЭОТАР-Медиа, 2020. 696 с.

Pokrovsky V.V. (ed.). [HIV-infection and AIDS. National leadership. 2nd edition, revised and expanded]. Мoscow: GEOTAR-Media, 2020. 696 p. (In Russ.).


31. Ядрихинская М.С., Шахгильдян В.И., Матосова С.В., Орловский А.А., Яровая Е.Б., Шипулина О.Ю. Значение качественных и количественных характеристик определения ДНК герпесвирусов (ЦМВ, ВЭБ, ВГЧ-6, ВПГ-1,2) в биологических жидкостях при поражении легких у больных ВИЧ-инфекцией. Сборник трудов Международной научно-практической конференции «Молекулярная диагностика 2018». Минск: СтройМедиаПроект, 2018; 357–9.

Yadrihinskaya M.S., Shakhgildyan V.I., Matosova S.V., Orlovskiy A.A., Yarovaya E.B., Shipulina O.U. [The value of the qualitative and quantitative characteristics of the determination of DNA of herpes viruses (CMV, EBV, HHV-6, HSV-1,2) in biological fluids in lung damage in patients with HIV-infection. Materials of the International Scientific and Practical Conference «Molecular Diagnostics 2018»]. Minsk: StroyMediaProekt, 2018; 357–9. (In Russ.).


32. Шахгильдян В.И., Ядрихинская М.С., Орловский А.А., Яровая Е.Б. Клиническая, вирусологическая, иммунологическая характеристика госпитализированных больных ВИЧ-инфекцией. Тер архив 2018; 90(11): 18–23.

Shakhgildyan V.I., Yadrihinskaya M.S., Orlovskiy A.A., Yarovaya E.B., [Clinical, virological, immunological characteristics of hospitalized patients with HIV infection]. Terapevticheskiy Archive 2018; 90(11): 18–23. ((In Russ.).


33. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018; 0: 1–31.


34. Liu S., Chen J., Yan Z., Dai S., Li C., Yao Y., Shi L. Polymorphisms in the CCR5 promoter associated with cervical intraepithelial neoplasia in a Chinese Han population. BMC Cancer 2019; 19(1): 525. doi: 10.1186/s12885-019-5738-6


35. Zheng B., Wiklund F., Gharizadeh B., Sadat M., Gambelunghe G., Hallmans G. et al. Genetic polymorphism of chemokine receptors CCR2 and CCR5 in Swedish cervical cancer patients. Anticancer Res. 2006; 26(5B): 366974.


36. Santos E.U., Lima G.D., Oliveira L., Heráclio A., Silva H.D., Crovella S. et al. CCR2 and CCR5 genes polymorphisms in women with cervical lesions from Pernambuco, Northeast Region of Brazil: a case-control study. Mem. Inst. Oswaldo Cruz 2016; 111(3): 174–80. doi: 10.1590/0074-02760150367


37. Yu K.J., Rader J.S., Borecki I., Zhang Z., Hildesheim A. CD83 polymorphisms and cervical cancer risk. Gynecol. Oncol. 2009; 114(2): 319–22. doi: 10.1016/j.ygyno.2009.04.033


38. Gong J.M., Shen Y., Shan W.W., He Y.X. The association between MTHFR polymorphism and cervical cancer. Sci. Rep. 2018; 8(1): 7244. doi: 10.1038/s41598-018-25726-9


39. Wang Y., Luo T. LINC00673 rs11655237 Polymorphism Is Associated With Increased Risk of Cervical Cancer in a Chinese Population. Cancer Control. 2018; 25(1): 1073274818803942. doi: 10.1177/1073274818803942


40. Scepanovic P., Alanio C., Hammer C., Hodel F., Bergstedt J., Patin E. et al. Human genetic variants and age are the strongest predictors of humoral immune responses to common pathogens and vaccines. Genome Med. 2018; 10(1): 59. doi: 10.1186/s13073-018-0568-8


41. Png E., Thalamuthu A., Ong R.T., Snippe H., Boland G.J., Seielstad M. A genome-wide association study of hepatitis B vaccine response in an Indonesian population reveals multiple independent risk variants in the HLA region. Hum. Mol. Genet. 2011; 20(19): 3893–8. doi: 10.1093/hmg/ddr302


42. Zhang Z., Wang C., Liu Z.. Zou G., Li J., Lu M. Host Genetic Determinants of Hepatitis B Virus Infection. Front Genet. 2019; 10: 696. doi.org/10.3389/fgene.2019.00696


43. Wu J.N., Wen X.Z., Zhou Y., Lin D., Zhang S.Y., Yan Y.S. Impact of the free-vaccine policy on timely initiation and completion of hepatitis B vaccination in Fujian China. J. Viral. Hepatol. 2015; 22(6): 551–60. doi: 10.1111/jvh.12359


44. Wang Y., Zhang X., Zhang H., Lu Y., Huang H., Dong X. et al. Coiled-coil networking shapes cell molecular machinery. Mol. Biol. Cell. 2012; 23(19): 3911–22. doi: 10.1091/mbc.E12-05-0396


45. Pacenti M., Maione N., Lavezzo E., Franchin E., Dal Bello F. et al. Measles Virus Infection and Immunity in a Suboptimal Vaccination Coverage Setting. Vaccines (Basel) 2019; 7(4). pii: E199. doi: 10.3390/vaccines 7040199


About the Autors


Veronika G. Kanestri, MD, Senior Researcher, Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being; Infectiologist, H-Clinic University Clinic, Moscow, Russia; e-mail: kanestri@yandex.ru; ORCID: http://orcid.org/0000-0002-2234-7094
Anna A. Popova, Cand. Med. Sci., Senior Researcher, Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being; Moscow, Russia; е-mail: asya-med@mail.ru; ORCID: http://orcid.org/0000-0001-9484-5917
Ekaterina I. Kulabukhova, Infectiologist, Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being; Head, Laboratory of Department of Infectious Diseases with Courses of Epidemiology and Phthisiology, Medical Institute, Peoples’ Friendship University of Russia, Moscow, Russia; е-mail: e-mail: ekulabukhova@mail.ru; ORCID: http://orcid.org/0000-0003-3645-7275
Vasily I. Shakhgildyan, Cand. Med. Sci., Senior Researcher, Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being; Infectiologist, H-Clinic University Clinic, Moscow, Russia; e-mail: vishakh@yandex.ru; ORCID:http://orcid.org/0000-0002-8686-0487


Similar Articles


Бионика Медиа