State of herd immunity against smallpox in Moscow residents


DOI: https://dx.doi.org/10.18565/epidem.2025.15.2.28-37

Gushchin V.A., Semenenko T.A., Simakova Ya.V., Ogarkova D.A., Dolzhikova I.V., Zubkova O.V., Zrelkin D.I., Grigoryev I.V., Sinyavin A.E., Pochtovy A.A., Borisevich S.V., Loginova S.Ya., Gintsburg A.L.

1) N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russia, Moscow, Russia; 2) I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russia (Sechenov University). Moscow, Russia; 3) M.V. Lomonosov Moscow State University, Moscow, Russia; 4) 48th Central Research Institute of the Ministry of Defense of the Russian Federation, Sergiev Posad, Russia
The global spread of monkeypox, including in non-endemic countries, allowed WHO to declare the outbreak of this disease a public health emergency of international concern in 2022. The maximum threat status required constant monitoring of the incidence, development of counteraction plans, expansion of diagnostic capabilities, use of specific prophylaxis and treatment. It was suggested that previously formed immunity to smallpox can with a high degree of probability protect against infection with monkeypox virus (MPXV).
Objective. Assessment of the level of residual immunity to vaccinia virus using serological cross-testing of blood serum samples in different age groups of the Moscow population.
Materials and methods. A proprietary ELISA test system was created and a virus neutralization reaction protocol was developed. Blood serum samples obtained from adult volunteers over 30 years of age (n = 3016) were tested for the presence of IgG to the cowpox virus, as well as virus neutralizing activity.
Results. The seropositivity rate (OPrel> 1.0) among individuals under 45 years of age was 10.8%, 46–65 years – 51.6%, and among individuals over 66 years of age – 66.8%, indicating that they have residual immunity to smallpox. Distribution of the examined individuals into two age cohorts, 30–45 years and 46–80 years, and their subsequent comparison showed that in the cohort of individuals aged 30–45 years, immunity with a level of virus-neutralizing antibodies (VNA) ≥ 1:20 was present in 5.4% of cases, while in the cohort of 46–80 years – in 46.4%. It was shown that there is a direct correlation between the data obtained by the methods of assessing virus-neutralizing activity and ELISA using the developed reagent kits.
Conclusion. The established level of protection is insufficient to achieve herd immunity. Calculations based on open data on monkeypox incidence in 2022 showed that to stop the circulation of MPXV in the population, at least 50.25–65.28% of the population should be immune to this infection. It is necessary to develop and create vaccines that are highly effective against orthopoxviruses, in particular MPXV, to ensure protection of Moscow residents in the event of the spread of monkeypox, circulation of the monkeypox virus and the achievement of herd immunity.

Literature


1. WHO (2022). WHO Director-General declares the ongoing monkeypox Outbreak a Public Health Emergency of International Concern. https://www.who.int/europe/news/item/23-07-2022-who-director-general-declares-the-ongoing-monkeypox-outbreak-a-public-health-event-of-international-concern


2. WHO. 2022-24 Mpox (Monkeypox) Outbreak: Global Trends. Available at: https://worldhealthorg.shinyapps.io/mpx_global/


3. Emergency situation reports. https://www.who.int/emergencies/situation-reports


4. Gessain A., Nakoune E., Yazdanpanah Y. Monkeypox. New Engl. J. Med. 2022; 387: 1783–1793. DOI: 10.1056/NEJMra2208860


5. Isidro J., Borges V., Pinto M., Sobral D., Santos J.D., Nunes A. et al. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat. Med. 2022; 28(8): 1569–1572. DOI: 10.1038/s41591-022-01907-y


6. Singh R.K., Balamurugan V., Bhanuprakash V., Venkatesan G., Hosamani M. Emergence and reemergence of vaccinia-like viruses: global scenario and perspectives. Indian J. Virol. 2012; 23: 1–11.


7. CDC. Multistate Outbreak of Monkeypox – Illinois, Indiana, and Wisconsin, 2003 (Atlanta, GA: Centers for Disease Control and Prevention, 2003), https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5223a1.htm


8. McGrail J.P., Mondolfi A.P., Ramírez J.D., Vidal S., García-Sastre A., Palacios G. et al. Comparative Analysis of 2022 Outbreak MPXV and Previous Clade II MPXV. J. Med. Virol. 2024; 96(11): e70023. DOI: 10.1002/jmv.70023


9. Adelino T., Santos S.C., Lima M.T., da Costa A., Guimarães N.R., Tomé L. et al. Differential diagnosis of exanthematous viruses during the 2022 Mpox outbreak in Minas Gerais, Brazil. J. Clin. Microbiol. 2024; 62(6): e0010324. DOI: 10.1128/jcm.00103-24


10. Alakunle E., Moens U., Nchinda G., Okeke M.I. Monkeypox Virus in Nigeria: Infection Biology, Epidemiology, and Evolution. Viruses 2020; 12(11): 1257. DOI: 10.3390/v12111257


11. Gigante C.M., Korber B., Seabolt M.H., Wilkins K., Davidson W., Rao A.K. et al. Multiple lineages of monkeypox virus detected in the United States, 2021–2022. Science 2022; 378(6619): 560–565. DOI: 10.1126/science.add4153


12. Adegboye O., Alele F., Pak A., Alakunle E., Emeto T., Leggat P. et al. Monkeypox Outbreak 2022, from a Rare Disease to Global Health Emergence: Implications for Travellers. Adv. Exp. Med. Biol. 2024; 1451: 355–368. DOI: 10.1007/978-3-031-57165-7_23


13. Patiño L.H., Guerra S., Muñoz M., Luna N., Farrugia K., van de Guchte A. et al. Phylogenetic landscape of Monkeypox Virus (MPV) during the early outbreak in New York City, 2022. Emerg. Microbes Infect. 2023; 12(1): e2192830. DOI: 10.1080/22221751.2023.2192830


14. Moss B. Understanding the biology of monkeypox virus to prevent future outbreaks. Nat. Microbiol. 2024; (6): 1408–1416. DOI: 10.1038/s41564-024-01690-1


15. MacIntyre C.R., Costantino V., Chen X., Segelov E., Chughtai A.A., Kelleher A. et al. Influence of Population Immunosuppression and Past Vaccination on Smallpox Reemergence. Emerg. Infect. Dis. 2018; 24: 646–653. DOI: 10.3201/eid2404.171233


16. Kunasekaran M.P., Chen X., Costantino V., Chughtai A.A., MacIntyre C.R. Evidence for Residual Immunity to Smallpox After Vaccination and Implications for Re-emergence. Mil. Med. 2019; 184(11–12): e668–e679. DOI: 10.1093/milmed/usz181


17. Mack T.M., Noble J.Jr., Thomas D.B. A prospective study of serum antibody and protection against smallpox. Am. J. Trop. Med. Hyg. 1972; 21: 214–218.


18. Costa G.B., Augusto L.T.S., Leite J.A., Ferreira P.C.P., Bonjardim C.A., Abrahão J.S. et al. Seroprevalence of Orthopoxvirus in rural Brazil: insights into anti-OPV immunity status and its implications for emergent zoonotic OPV. Virol. J. 2016; 13: 121. DOI: 10.1186/s12985-016-0575-6


19. Costantino V., Trent M.J., Sullivan J.S., Kunasekaran M.P., Gray R., MacIntyre R. Serological Immunity to Smallpox in New South Wales, Australia. Viruses 2020; 12(5): 554. DOI: 10.3390/v12050554


20. Kennedy R.B., Poland G.A., Ovsyannikova I.G., Oberg A.L., Asmann Y.W., Grill D.E. et al. Impaired innate, humoral, and cellular immunity despite a take in smallpox vaccine recipients. Vaccine 2016; 34: 3283–3290. DOI: 10.1016/j.vaccine.2016.05.005


21. Haralambieva I.H., Ovsyannikova I.G., Kennedy R.B., Larrabee B.R., Pankratz V.S., Poland G.A. Race and sex-based differences in cytokine immune responses to smallpox vaccine in healthy individuals. Hum. Immunol. 2013; 74: 1263–1266. DOI: 10.1016/j.humimm.2013.06.031


22. Troy J.D., Hill H.R., Ewell M.G., Frey S.E. Sex difference in immune response to vaccination: A participant-level meta-analysis of randomized trials of IMVAMUNE®smallpox vaccine. Vaccine 2015; 33: 5425–5431. DOI: 10.1016/j.vaccine.2015.08.032


23. Harrop R., Ryan M.G., Golding H., Redchenko I., Carroll M.W. Monitoring of human immunological responses to vaccinia virus. Methods Mol. Biol. 2004; 269: 243–266. DOI: 10.1385/1-59259-789-0:243


24. Trends of mpox cases reported to CDC during the clade II outbreak by date. https://www.cdc.gov/mpox/data-research/cases/?CDC_AAref_Val=https:/ /www.cdc.gov/poxvirus/mpox/response/2022/mpx-trends.html


25. World Health Organization. Mpox: Multi-country External Situation Report. file:///C:/Users/admin/Downloads/20241223_mpox-external-sitrep_-44.pdf


26. Du Z., Shao Z., Bai Y., Wang L., Herrera-Diestra J.L., Fox S.J. et al. Reproduction number of monkeypox in the early stage of the 2022 multi-country outbreak. J. Travel. Med. 2022; 29(8): taac099. DOI: 10.1093/jtm/taac099


27. Oliveira S.N..I, de Oliveira J.S., Kroon E.G., Trindade G.S., Drumond B.P. Here, There, and Everywhere: The Wide Host Range and Geogrаphic Distribution of Zoonotic Orthopoxviruses. Viruses 2021; 13(1): 43. DOI:10.3390/v13010043


28. Lum F.M., Torres-Ruesta A., Tay M.Z., Lin R.T., Lye D.C., Re´nia L. et al. Monkeypox: disease epidemiology, hostimmunity and clinical interventions. Nat. Rev. Immunol. 2022; 22: 597–613. DOIDOI: 10.1038/s41577-022-00775-4


29. Hammarlund E., Lewis M.W., Carter S.V., Amanna I., Hansen S.G., Strelow L.I. et al. Multiple diagnostic techniques identify previously vaccinated individuals with protective immunity against monkeypox. Nat. Med. 2005; (11): 1005–1011. DOI: 10.1038/nm1273


30. Adamo S., Gao Y., Sekine T., Mily A., Wu J., Storgärd E. et al. Memory profiles distinguish cross-reactive and virus-specific T cell immunity to mpox. Cell. Host. Microbe 2023; 31(6): 928–936.e4. DOI: 10.1016/j.chom.2023.04.015


31. Grifoni A., Zhang Y., Tarke A., Sidney J., Rubiro P., Reina-Campos M. et al. Defining antigen targets to dissect vaccinia virus and monkeypoxvirus-specific T cell responses in humans. Cell Host. Microbe 2022; 30: 1662–1670.e4. DOI: 10.1016/j.chom.2022.11.003


About the Autors


Vladimir A. Gushchin, ВD, Associate Professor, Head, Department Epidemiology, N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russia; Head, Department of Medical Genetics, I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russia (Sechenov University); Senior Researcher, Department of Virology, Faculty of Biology, M.V. Lomonosov Moscow State University, Ministry of Health of the Russia, Moscow, Russia; wowaniada@yandex.ru; https://orcid.org/0000-0002-9397-3762
Professor Tatyana A. Semenenko, MD. Chief Researcher, N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russia; Professor, Department of Infectology and Virology, I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russia (Sechenov University), Moscow, Russia; semenenko@gamaleya.org; https://orcid.org/0000-0002-6686-9011
Yana V. Simakova, Researcher, N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russia, Moscow, Russia; y.v.simakova@yandex.ru; https://orcid.org/0000-0002-5033-6931
Daria A. Ogarkova, Junior Researcher, N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russia Moscow, Russia; DashaDv1993@gmail.com; https://orcid.org/0000-0002-1152-4120
Inna V. Dolzhikova, Cand. Biol. Sci., Leading Researcher, Head, Laboratory of the State Collection of Viruses, N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russia Moscow, Russia; iv.dolzhikova@yandex.ru; https://orcid.org/0000-0003-2548-6142
Olga V. Zubkova, Cand. Biol. Sci., Leading Researcher, N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russia Moscow, Russia; olga-zubkova@yandex.ru; https://orcid.org/0000-0001-7893-8419
Denis I. Zrelkin, Junior Researcher, N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russia Moscow, Russia; aleza4striker@yandex.ru; https://orcid.org/0000-0003-0899-8357
Igor V. Grigoryev, Researcher, N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russia Moscow, Russia; iggrigoriev.ltb@gmail.com; https://orcid.org/0000-0001-6946-2156
Andrey E. Sinyavin, Cand. Chem Sci., Researcher, N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russia, Moscow, Russia; andreysi93@ya.ru; https://orcid.org/0000-0001-7576-2059
Andrey A. Pochtovоy, Cand. Biol. Sci., Senior Researcher, Head, Laboratory of Biotechnology, N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russia; Associate Professor, Department of Medical Genetics, I.M. Sechenov First Moscow State Medical University, Ministry of Health ofthe Russia (Sechenov University), Moscow, Russia; a.pochtovyy@gamaleya.org; https://orcid.org/0000-0003-1107-9351
Professor Sergey V. Borisevich, Academician of the Russian Academy of Sciences, BD, Director, 48th Central Research Institute, Ministry of Defense of the Russian Federation, Sergiev Posad, Russia; 48cnii@mil.ru; https://orcid.org/0000-0002-6742-3919
Svetlana Ya. Loginova, BD, Leading Researcher, 48th Central Research Institute, Ministry of Defense of the Russian Federation, Sergiev Posad, Russia; 48cnii@mil.ru; https://orcid.org/ 0000-0001-6732-8404
Professor Aleksandr L. Gintsburg, Academician of the Russian Academy of Sciences, BD, Director, N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russia; Head, Department of Infectology and Virology, ,I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russia (Sechenov University), Moscow, Russia; gintsburg@gamaleya.org; https://orcid.org/0000-0003-1769-5059


Similar Articles


Бионика Медиа