Design of the optimal composition of protective media for lyophilization of the reference Yersinia pestis EV Niieg strain and its genetically modified variants that carry antibiotic resistance determinants in the genome


DOI: https://dx.doi.org/10.18565/epidem.2021.11.2.89-93

Lopatina N.V.

Rostov-on-Don State Medical University, Ministry of Health of Russia, Rostov-on-Don, Russia
Objective. To design the optimal composition of protective media for lyophilization of the reference Yersinia pestis EV NIIEG strain and its genetically engineered variants Y. pestis EVA and Y. pestis EV76R16, with chromosomal and plasmid resistance to antibiotics, respectively.
Materials and methods. The quantitative ratios of the components of the protective media based on the standard sucrose-gelatin with thiourea (SGT) medium were optimized using the mathematical experiment planning methods (PFE 23) and (PFE 24). The Monte Carlo method was used for calculations according to the licensed random number generation program. The results of experimental studies conducted on the proposed matrix were used to construct mathematical models for the processes of optimizing protection environments. The obtained models constructed for each of the Yersinia pestis EV NIIEG., Y. pestis EVA, and Y. pestis EV76R16 strains taken in the experiment, without performing natural experiments, were used to estimate virtually the optimal quantitative ratios of the components of the protective media. The effectiveness of the designed environments was tested experimentally.
Results. The protective properties of the obtained protective media using a balanced quantitative approach were increased for the reference strain by 2 times, for the EV76R16 strain by 1.5 times, and for Y. pestis EVA by 3 times as compared to the control SGT medium.
Conclusion. The use of the mathematical experiment planning methods could adjust the quantitative composition of protective media for each of the 3 strains taken in the experiment, by reducing the time of the experiment and the material costs for the depreciation of the equipment used.

Literature


1. Будыка Д.А., Абзаева Н.В., Гостищева С.Е., Ракитина Е.Л., Иванова Г.Ф., Фисун А.А. Биотехнология стабилизации живых микроорганизмов в биомассе и в препарате чумной вакцины. Инфекция и иммунитет 2016; 1(6): 87–92.

Budyka D. A., Abzaeva N. V., Gostischeva S. E., Rakitina E.L., Ivanova G. F., Fisun A.А. [Biotechnology of stabilization of living microorganisms in biomass and in the preparation of plague vaccine]. Infection and Immunity 2016; 1(6): 87–92 (In Russ.).


2. Будыка Д.А., Фисун А.А., Ракитина Е.Л., Абзаева Н.В. Изучение в эксперименте иммунологической активности вакцины чумной живой, подвергнутой воздействию экстремальной температуры. Эпидемиология и вакцинопрофилактика 2015; 4(14): 74–9.

Budyka D.A., Fisun A.A., Rakitina E.L., Abzaeva N.V. [Experimental studyof the immunological activity of a live plague vaccine exposed to extreme temperature]. Epidemiology and Vaccinal Prevention 2015; 4(14): 74–9. (In Russ.).


3. Лисенков А.Н., Чумаков М.П. Миронова А.Л. Системный подход к статистическому анализу и оптимизации процессов биотехнологического производства вакцин. Биотехнология 1990; (6): 77–81.

Lisenkov A.N., Chumakov M.P. Mironova A.L. [System approach to statistical analysis and optimization of processes of biotechnological production of vaccines]. Biotechnology 1990; (6): 77–81. (In Russ.).


4. Лисенков А.Н. Планирование эксперимента. Материалы семинара МДНТП им. Дзержинского. М., 1990: 34–43.

Lisenkov A.N. [Planning of the experiment. Materials of the seminar of the Moscow House of Scientific and Technical Creativity]. Moscow, 1990: 34–43. ((In Russ.).


5. Лопатина Н.В., Янгулов Ш.Х., Михайлова Н.Н., Наталич Л.А. Оптимизация защитной среды для лиофилизации вакцинного штамма чумного микроба. Проблемы особо опасных инфекций 1995: 4(47): 122–8.

Lopatina N.V., Yangulov Sh.Kh., Mikhailova N.N., Natalich L.A. [Optimization of the protective environment for lyophilization of the vaccine strain of the plague microbe]. Problems of Particularly Dangerous Infections 1995: 4(47): 122–8. ((In Russ.).


6. Лопатина Н.В., Наталич Л.А. Использование метода математического планирования эксперимента при лиофилизации вакцинного штамма чумного микроба, несущего в геноме детерминанты устойчивости к антибактериальным средствам. Биотехнология 1994; (3): 34–6.

Lopatina N.V., Natalich L.A. [The use of the method of mathematical planning of the experiment in the lyophilization of the vaccine strain of the plague microbe, which carries the determinants of resistance to antibacterial agents in the genome]. Biotechnology 1994; (3): 34–6. ((In Russ.).


7. Швецов С.А., Черкасов Н.А., Ежов А.В., Багин С.В., Тетерин В.В., Мохов Д.А. Математическое моделирование процесса приготовления таблетированной формы живой сухой чумной вакцины. Биомедицина 2010; (1): 64–71.

Shvetsov S.A., Cherkasov N.A., Yezhov A.V., Bagin S.V., Teterin V.V., Mokhov D.A. [Mathematical modeling of the process of preparation of a tablet form of a live dry plague vaccine]. Biomedicine 2010; (1): 64–71. ((In Russ.).


8. Лещенко А.А., Швецов С.А., Кругин В.В., Багин С.В., Ежов А.В., ЛазукинА.Г., Логвинов С.В., Мохов Д.А., Бирюков В.В., Зиганшин А.Р. Математическая модель процесса лиофилизации в технологии вакцины чумной живой. Вестник биотехнологии и физико-химической биологии им. Ю.А. Овчинникова 2017; 3(13): 21–5.

Leshchenko A.A., Shvetsov S.A., Krugin V.V., Bagin S.V., Yezhov A.V., LazukinA N.G., Logvinov S.V., Mokhov D.A., Biryukov V.V., Ziganshin A. R. [Mathematical model of the lyophilization process in the technology of live plague vaccine]. Bulletin of Biotechnology and Physico-chemical Biology named after Yu.A. Ovchinnikov 2017; 3(13): 21–5. (In Russ.).


9. Котлов С.А. Оптимизация криопротекторов для лиофилизации вакцинных штаммов Salmonella. Биологический журнал: Эл. научный журнал. 2019; 5(15). https//био–j.ru/5/124. DOI: 10.32743/2658 -6460.2019.5/5/124

Kotlov S.A.[Optimization of cryoprotectors for lyophilization of Salmonella vaccine strains]. Biological Journal: Electronic Scientific Journal.2019; 5(15). https//bio–j.ru/5/124. (In Russ.). DOI: 10.32743/2658-6460.2019. 5/5/124


10. Комиссаров А.В., Бибиков Д.Н., Волох О.А.,Базарин С.А., Синицина Н.В., Костылева Н.И., Германчук В.Г., Никифоров А.К. Лиофилизация живых вакцин. Вестник биотехнологии и физико-химической биологии им. Овчинникова 2018; 3(14): 56–73.

Komissarov A.V., Bibikov D.N., Volokh O.A., Bazarin S.A., Sinitsina N.V., Kostyleva N.I., Germanchuk V.G., Nikiforov A.K. [Lyophilization of live vaccines]. Bulletin of Biotechnology and Physico-chemical Biology named after Yu.A. Ovchinnikov 2018; 3(14): 56–73 ((In Russ.).


11. Голякевич З.С., Калдыркаев А.И., Феоктистова Н.А. Влияние защитных сред на выживаемость штаммов бактерий при лиофилизации. https://Scienceforum/ru.2017/article/ 2017036595

Golyakevich Z.S., Kaldyrkaev A.I., Feoktistova N.A. [The effect of protective media on the survival of bacterial strains during lyophilization]. https://Scienceforum/ru 2017/ article/2017036595 (In Russ.).


12. Рыжко И.В., Цураева Р.И., Молдаван И.Ф. Щербанюк А.И., Шутько А.Г. Оценка перспектив сочетанной специфической профилактики антибиотикорезистентным иммуногенным штаммом чумного микроба и экстренной профилактики аминогликозидами на модели экспериментальной чумы белых мышей. Антибиотики и химиотерапия 2003; 48(5): 15–20.

Ryzhko I.V., Tsuraeva R.I ., Moldavan I.F. Shcherbanyuk A.I., Shutko A.G. [Evaluation of the prospects for combined specific prevention with an antibiotic-resistant immune strain of the plague microbe and emergency prevention with aminoglycosides on the experimental model-noah’s plague of white mice]. Antibiotics and Chemotherapy 2003; 48(5): 15–20. (In Russ.).


13. Шеремет О.В., Корганов Я.Н., Терентьев А.Н., Шатова И.Н. Среда культивирования возбудителя чумы при 28 и 37 оС. Актуальные вопросы разработки препаратов медицинской биотехнологии. М.,1988: 108–9

Sheremet O.V., Korganov Ya.N., Terentyev A.N., Shatova I.N. [Wednesday the cultivation of the causative agent of plague at 28 and 37 ° C]. Current issues development of medical biotechnology products. Moscow, 1988: 108–9. (In Russ.).


14. Максимов В.Н., Федоров В.Д. Применение методов математического планирования эксперимента. М.: МГУ, 1969. 146 с.

Maksimov V.N., Fedorov V.D. •Application of methods of mathematical planning of the experiment]. Moscow: Moscow State University, 1969. 146 p. (In Russ.).


15. Tymczyszyn E.E., Sosa N., Gerbino E, Hugo A., Gomez-Zavaglia A., Schebor C. Effect of physical properties on the stability of Lactobacillus bulgaricus in a freeze-dried galacto-oligosaccharides matrix. Int. J. Food Microbiol. 2012; 155(3): 217–21. DOI: 10.1016/j. ijfoodmicro.2012.02.008


16. Leslie S.B., Israeli E., Lighthart B., Crowe J.H., Crowe L.M. Trehalose and sucrose protect both membranes and proteins in intact bacteria During drying. Ahll. Environ. Microbiol. 1995; (10): 3592–7.


17. Ohtake S., Martin R.F. ,Saxena A., Lechuga-Ballesteros D., Santiago A.E., Barry E.V., Truong-Le V. Formulation and stabilization Francisella tularensis Live vaccine strain. J. Phrm. Sci. 2011; 100(8): 3076–87. DOI: 10.1002/jps.16


18. Грачева И.В., Осин А.В. Механизмы повреждений бактерий при лиофилизации и протективное действие защитных сред. Проблемы особо опасных инфекций. 2016; (3): 5–12.

Gracheva I.V., Osin A.V. [Mechanisms of bacterial damage in lyophilization and protective effect of protective media]. Problems of Particularly Dangerous Infections 2016; (3): 5–12. (In Russ.).


19. Kouda K., Iki M. Beneficial effects of mild stress (hormetic effects): dietary restriction and health. J. Physiol. Anthropol. 2010; 29: 127–32.


20. Calabrese EJ, Mattson MP, Calabrese V. Resveratrol commonly displays hormesis: occurrence fnd biomedical signifcance. Hum. Exp. Toxicol. 2010; 29: 980–1015.


About the Autors


Natalia V. Lopatina, Сand. Med. Sci., Assistant Lecturer, Department of Hygiene, Rostov-on-don State Medical University, Ministry of Health of Russia, Rostov-on-Don, Russia; е-mail: Natalija.Kozhanova2016@yandex.ru


Бионика Медиа