Retrospective analysis of the efficacy of topical and systemic steroids as pathogenetic therapy for viral pneumonias


Koltsova I.V., Fadeeva O.A., Ponezheva Zh.B.

1Infectious Diseases Hospital One, Moscow Healthcare Department, Moscow, Russia; 2A.S. Puchkov Substation Eleven, Ambulance and Emergency Medical Care Station, Moscow, Russia; 3Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being, Moscow, Russia
The paper sets forth the present-day views on the pathogenesis of viral pneumonia and acute respiratory distress syndrome. It gives the data of a retrospective analysis of the efficiency of different treatment regimens for patients with acute respiratory viral infection (ARVI) and influenza in the 2009 pandemic period. The paper analyzes the literature sources containing the results of clinical and experimental studies of different treatment regimens for influenza, by analyzing the main mechanisms of action of corticosteroids. It discusses the possibilities, problems, and prospects of different treatment options in patients with the severe course and complications of ARVI/influenza.

Literature


  1. [10 leading causes of death in the world]. WHO. Information Bulletin. January 2017. http://www.who.int/mediacentre/factsheets/fs310/ru/. (In Russ.).
  2. [The flu. Facts and statistics]. http://www.euro.who.int/ru/health-topics/communicable-diseases/influenza/data-and-statistics. (In Russ.).
  3. Han K., Ma H., An X. Yang Yang et al. Early use of glucocorticoids was a risk factor for critical disease and death from pH1N1 infection. Clin. Infect. Dis. 2011; 53(4): 326–33.
  4. Polushin Yu. S., Khrapov K. N., May M. J., Dikarev K. V. [Viral pneumonia influenza A (H1N1) infection, complicated by ARDS]. Obschaya reanimatologiya 2010; VI (3): 15–22. (In Russ.).
  5. Hendrickson C.M., Matthay M.A. Viral Pathogens and Acute Lung Injury: Investigations Inspired by the SARS Epidemic and the 2009 H1N1 Influenza Pandemic. Semin. Respir. Crit. Care Med. 2013; 34: 475–86
  6. Chereshnev V.A., Litvitsky P.F., Tsygan V.N. [Clinical pathophysiology]. Saint Petersburg: SpetsLit, 2015; 679–711. (In Russ.).
  7. Hwang D.M., Chamberlain D.W., Poutanen S.M., Low D.E., Asa S.L., Butany J. Pulmonary pathology of severe acute respiratory syndrome in Toronto. Mod. Pathol. 2005; 18(1): 1–10.
  8. [Flu in adults. Clinical guidelines]. 2017. http://nnoi.ru/novye-klinicheskie-protokol. (In Russ.).
  9. [Severe case of the flu. Clinical guidelines]. 2016. http://spulmo.ru/obrazovatelnye-resursy/federalnye-klinicheskie-rekomendatsii/. (In Russ.).
  10. Martin-Loeches I., Lisboa T., Rhodes A. et al. Use of early corticosteroid therapy on ICU admission in patients affected by severe pandemic (H1N1) influenza A infection. Intensive Care Med. 2011; 37(2): 272–83.
  11. Wagner Luis Nedel, David Garcia Nora, Jorge Ibrain Figueira Salluh et al. Corticosteroids for severe influenza pneumonia: A critical appraisal. World J. Crit. Care Med. 2016; 5(1): 89–95.
  12. Lopatin A.S. [Rational pharmacotherapy of diseases of the ear, nose and throat. A guide for practitioners]. Moscow: Litterra, 2011; 10–9. (In Russ.).
  13. Gibson P.G., Saltos N., Fakes K. Acute antiinflammatory effects of inhaled budesonide in asthma. A Randomized Controlled Trial. Am. J. Respir. Crit. Care Med. 2001; 163: 32–6.
  14. Myles P., Nguyen-Van-Tam J.S., Semple M.G. et al. Differences between asthmatics and nonasthmaticshospitalised with influenza A infection. Eur. Respir. J. 2013; 41(4): 824–31.
  15. Hayashi R., Wada H., Ito K., Adcock I.M. Effects of glucocorticoids on gene transcription. Eur. J. Pharmacol. 2004; 500: 51–62.
  16. Karin M. New twists in gene regulation by glucocorticoid receptor: is DNA binding dispensable. Cell 1998; 93: 487–90.
  17. Mendes E.S., Pereira A., Danta I. et al. Comparative bronchial vasoconstrictive efficacy of inhaled corticosteroids. Eur. Respir. J. 2003; 21: 989–93.
  18. Edmonds M.L., Camargo C.A. Jr, Pollack C.V. Jr, Rowe B.H. Early use of inhaled corticosteroids in the emergency department treatment of acute asthma (update of Cochrane Database Syst. Rev. 2001; CD002308; PMID: 11279763). Cochrane Database of Systematic Reviews 2013; CD002308:
  19. Liu L., Wang Y.X., Zhou J. et al. Rapid non-genomic inhibitory effects of glucocorticoids on human neutrophil degranulation. Inflamm Res. 2005; 54: 37–41.
  20. Long F., Wang Y.X., Liu L., Zhou J., Cui R.Y., Jiang C.L. Rapid nongenomic inhibitory effects of glucocorticoids on phagocytosis and superoxide anion production by macrophages. Steroids 2005; 70: 55–61.
  21. Perretti M., Ahluwalia A. The microcirculation and inflammation: site of action for glucocorticoids. Microcirculation 2000; (7): 147–61.
  22. Wallerath T., Witte K., Schafer S.C. et al. Down-regulation of the expression of endothelial NO synthase is likely to contribute to glucocorticoid-mediated hypertension. Proc. Nat. Acad. Sci. USA 1999; 96: 13357–62.
  23. Schoonbrood D.F.M., Out T.A., Lutter R., Reimert C.M., Vanoverveld F.J., Jansen H.M. Plasma-protein leakage and local secretion of proteins assessed in sputum in asthma and COPD – the effect of inhaled corticosteroids. Clin. Chim. Acta 1995; 240: 163–78.
  24. Mokra D., Kosutova P., Balentinova S. Effects of budesonide on the lung function, inflammation and apoptosis in a saline-lavage model of acute lung ingury. J. Рhysiol. Рharmacol. 2016; 67(6): 919–32.
  25. Cronstein B.N., Kimmel S.C., Levin R.I., Martiniuk F., Weissmann G. A mechanism for the antiinflammatory effects of corticosteroids – the glucocorticoid receptor regulates leukocyte adhesion to endothelial-cells and expression of endothelial leukocyte adhesion molecule-1 and intercellular-adhesion molecule-1. Proc. Nat. Acad. Sci. USA 1992; 89: 9991–5.
  26. Wen L.P., Madani K., Fahrni J.A., Duncan S.R., Rosen G.D. Dexamethasone inhibits lung epithelial cell apoptosis induced by IFN-gamma and Fas. Am. J. Physiol. 1997; 273: L921–9.
  27. Hirsch G., Lavoie-Lamoureux A., Beauchamp G., Lavoie J.P. Neutrophils Are Not Less Sensitive Than Other Blood Leukocytes to the Genomic Effects of Glucocorticoids. PLoS One. 2012; 7(9): e44606. https://www.ncbi.nlm.nih. gov/pmc/articles/PMC3440353/.
  28. Strandberg K., Blidberg K., Sahlander K., Palmberg L., Larsson K. Effect of formoterol and budesonide on chemokine release, chemokine receptor expression and chemotaxis in human neutrophils. Pulm. Pharmacol. Ther. 2010; 23: 316–23.
  29. Lowenberg M., Verhaar A.P., van den Brink G.R., Hommes D.W. Glucocorticoid signaling: A nongenomic mechanism for T-cell immunosuppression. Trends Mol. Med. 2007; 13: 158–63.
  30. LIPS-B: Lung Injury Prevention Study WithBudesonide and Beta (LIPS-B). https://clinicaltrials.gov. Last updated: July 22, 2016.
  31. Gao W., Ju Y.N. Budesonide inhalation ameliorates endotoxin-induced lung injury in rabbits. Exp. Biol. Med. (Maywood). 2015; 240(12): 1708–16.
  32. Gao W., Ju Y.N. Budesonide attenuates ventilator-induced lung injury in a rat model of inflammatory acute respiratory distress syndrome. Arch. Med. Res. 2016; 47: 275–84.
  33. Ju Y.N., Yu K.J., Wang G.N. Budesonide ameliorates lung injury induced by large volume ventilation. BMC Pulm. Med. 2016; 16: 90. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893281/


About the Autors


For correspondence:
Irina V. Koltsova, Infectious Disease Physician, Infectious Clinical Hospital One, Moscow Healthcare Department
Address: 63, Volokolamskoye Shosse, Moscow 125367, Russia
Е-mail: Irinfms@mail.ru
Information about the authors:
Olga A. Fadeeva, Infectious Disease Physician, A.S. Puchkov Substation Eleven, Ambulance and Emergency Medical Care Station, Moscow Healthcare Department, 11 substation; Мoscow, Russia; е-mail: fadolga@yandex.ru
Zhanna B. Ponezheva, MD; Leading Researcher, Clinical Department of Infectious Diseases, Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being; Мoscow, Russia; е-mail: doktorim@mail.ru


Similar Articles


Бионика Медиа